
DIVERSE USES OF PYTHON AT DIAMOND

M. G. Abbott, T. M. Cobb, I. J. Gillingham, M. T. Heron,
Diamond Light Source, Oxfordshire, UK

Abstract

Diamond Control Systems Group has used Python for a
range of control system applications. These include scripts
to support use of the application build environment, client
GUIs and integrated with EPICS as EPICS Channel Access
servers and concentrators. This paper will present these
applications and summarise our experience.

INTRODUCTION

Distributed control systems at Diamond extensively use
Python scripting for clients and some applications. Three
examples of this are presented here.

PYTHON CHANNEL ACCESS BINDINGS

Bindings for EPICS channel access have been imple-
mented in Python using the ctypes library, which allows
Python to directly call all of the C functions required to
implement full EPICS client functionality. Channel access
is provided through three functions: caput, caget and
camonitor.

caput(pvs, values, repeat_value=False,
timeout=5, wait=False, throw=True)

caget(pvs, timeout=5, datatype=None,
format=FORMAT_RAW, count=0, throw=True)

camonitor(pvs, callback, events=DBE_VALUE,
datatype=None, format=FORMAT_RAW,
count=0, all_updates=False,
notify_disconnect=False)

The caput() function is the simplest to describe: this
writes a single value to a single PV. Python values are
automatically converted into channel access (DBR) format:
all channel access datatypes are supported.

The caget() function is a bit more tricky. Support
for reading multiple PVs at once is helpful, as then the
library can wait for all values in parallel (the cothread
framework described below makes this particularly easy
and efficient). Conversion of channel access values to
Python values is reasonably straightforward—values are
one of string, integer or floating point. If channel access
delivers an array of values then Numeric Python [1] is used
to represent the resulting array. The call to caget() can
specify the desired data format (using either Python data
types or channel access enum names).

The most interesting functionality arises if timestamps,
status or control values are requested. This is done by
specifying the format of the required data as one of RAW
(data only), TIME (timestamps with status fields) or CTRL

(all extra channel access ”control” fields). All the extra
values are returned as fields of the returned value, for
example:

signal = caget(’SR21C-DI-DCCT-01:SIGNAL’,
format=FORMAT_TIME)

print signal.name, signal, signal.timestamp

Note that the value returned by caget() is, in effect, a
double with extra fields: Python allows builtin types to be
subclassed in this way.

Finally camonitor() raises the most difficult issues:
callbacks delivering new data from channel access can
occur at any time. There are three possible solutions:
allow callbacks to occur completely asynchronously (using
threads), allow callbacks to occur only when polled
explicitly, or allow callbacks to automatically occur when
convenient. In this library we use the last approach.

Python support for threads has the disadvantage of
threads that updates can occur at any time, for example
when a data structure being updated is in an inconsistent
state, without the compensating advantage of being able to
use multiple processor cores. The decision was made to
use Python’s support for coroutines provided through the
Greenlet library [2]. This is very low level, so it was also
necessary to write a simple coroutine scheduler on top of
the greenlet library.

In the end, the channel access library (catools) has
turned into the primary application of a coroutine threading
library (cothread). Most users don’t need to be aware
of the existence of coroutines, but they are there in the
background. The most basic functions provided by the
coroutine library are Spawn (starts a new coroutine or
“cothread”) and Wait (suspends the calling cothread until
a specified event occurs). The main complication of
this approach has been integration with other libraries, in
particular the Qt library—currently this is implemented
through polling on a timer by a dedicated cothread.

CONTROL SYSTEM USER INTERFACE

A graphical user interface has been implemented at
Diamond, based on the Qt interface [3] with Python (PyQt
[4]) and the channel access bindings described above.
Figure 1 shows an example of this applied to a photon beam
front-end. Qt/Python has the following advantages over the
Extensible Display Manager (EDM [5]).

• Object Oriented Design allows for easy inheritance
for adding new classes of widgets and the potential
to modify the behaviour of existing ones, without the
need to modify or rebuild the base libraries.

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP024

Classical Topics Control Software: Applications and Tools

137

Figure 1: Example screenshot of Qt/Python application

• Good processing of large XML datasets, which we
have found to be a powerful approach to application
configuration.

• Scalable Vector Graphics rendering, is the basis for
much of our implementation of the Qt/Python user
interface. This permits easy manipulation of widgets,
such as changing element fill colour, shape and
position as required at run-time, through the standard
Document Object Model.

• Dynamic scalability (zooming) allows the size of
the user interface to be changed at will, which can
significantly improve desktop real-estate, especially
when multiple application windows are displayed.

• Ability at runtime, to customise a single, common
application architecture, in order to support multiple
systems, which are similar, but not necessarily
identical (e.g. Diamond’s Front Ends).

• The visualisation of complex three-dimensional scan
plots and beamline geometry is being realised through
Python graphical interfaces, using OpenGL.

Implementation

The class diagram in figure 2 highlights the design
pattern adopted to facilitate the implemention of widgets
with specific characteristics. Only three widget classes are
shown as examples in this diagram.

The EPICS Channel Access (CA) interface is via
the catools library described above. An example im-
plementation (from Diamond’s Front Ends interface) is
abstracted in the EpicsSVGGraphic class. The applica-
tion framework implements the modern Qt scene/view
framework. The view layout is specified by subclassing
QtGui.QGraphicsView, instantiating all widgets in the
constructor, defining their positions and setting their PV
identifiers.

When EpicsSVGGraphic is instantiated, it subscribes to
updates of the given EPICS PV, by supplying its callback
function to the CA interface. Update processing, specific
to a graphical widget, is realised simply by overriding
the base-class callback. For instance, a valve widget will
change the fill-colour of the graphical element, depending
on the new valve status.

All widgets derived from EpicsSVGGraphic, also

Figure 2: EPICS Qt Widget Class Diagram

inherit full clipboard copy functionality (XDND protocol),
tooltips and context menus.

PYTHON IN SIMULATIONS

EPICS based photon beamlines at Diamond are increas-
ingly using Asyn [6] as an interface layer between Device
and Driver Support (figure 3 left). This abstraction allows
the low level driver to be replaced with a simulation
without modifying the upper levels of the structure. These
simulations support early testing, not only of high level
applications including EDM panels, but also core modules
such as Asyn and Stream Device [7].

Driver Support

Asyn Port

Device Support

Record Support

EPICS Database

Real Device

Client Tools

Driver Support

Asyn Port

Device Support

Record Support

EPICS Database

Simulated Device

Client Tools

Asyn Port

Device Support

Record Support

EPICS Database

Simulated
Driver

Support

Client Tools

Figure 3: Asyn device structure and the two most desirable
levels of simulation

TUP024 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

138

Control Software: Applications and Tools

The Problem

The most realistic and useful simulation is written at the
lowest possible level. However, driver support is typically
written in C, making simulations at that level quite time
consuming.

Our Solutions

The first solution is to use the existing Driver Support
but connect it to a Simulated Device (figure 3 middle).
Serial devices are simulated in this way, by creating a
virtual serial port at the system level and connecting a
drvAsynSerialPort to it. The second solution is to replace
the Driver Support with a simulation (figure 3 right). This
is likely to be used for a complex device like a camera or
scaler card. Both solutions can be accomplished in Python.

Creating a Simulated Device

The Python class serial_device wraps either a TCP
server or a Linux pseudo serial port, deals with I/O and
terminators, and provides scheduling functionality. The
programmer is required to code a reply method suitable for
the device. Figure 4 is the code for a device that has one
internal value. It can be read by sending “?” and written by
sending anything else. The accompanying database uses
Stream Device to strip off the terminator and parse the
response.

class my_serial(serial_device):
set a terminator and internal val
Terminator = "\r\n"; val = 1
def reply(self, command):

return reply to <command>
if command=="?":

return self.val
else:

self.val=command
return "OK"

Figure 4: Simple serial sim example

Creating Simulated Driver Support

The Python class pyDrv registers itself as an Asyn
port with a variety of interfaces, provides scheduling and
callback functionality and handles type conversion to and
from Python native types. The programmer is required
to code suitable write and read methods. Figure 5 is
the code for a simple example that keeps an internal
dictionary object of values, and allows access to these
via a series of commands. The accompanying database
has records of many types with INP or OUT links like
“@Asyn($(PORT) 0)C”.

Instances of these classes need to be created in
the EPICS IOC. The “Python” command provided by
pyDrv ensures the interpreter is running and executes the
argument as a Python command. Figure 6 shows an excerpt

class my_asyn(pyDrv):
supported list of asyn commands
commands = ["A","B","C","D"]
internal dictionary of values
vals = {"A":1,"B":"BE","C":3.4,"D":[1,2]}
def write(self,command,signal,value):

write <value> to internal dict
self.vals[command] = value

def read(self,command,signal):
return value from internal dict
return self.vals[command]

Figure 5: Simple pyDrv example

from a startup script creating both kinds of port. The file
my.py imported in the first line contains the code in Figures
4 and 5, the databases connect to port a and port b.

Python("from my import my_serial,my_asyn")
start a virtual serial port
Python("a = my_serial()")
Python("a.start_serial(’env_a’)")
name of port stored in environment var
drvAsynSerialPortConfig(’port_a’,’$env_a’)
Python("b = my_asyn(’port_b’)")

Figure 6: Excerpt from st.cmd startup script

CONCLUSIONS

Python has provided a flexible and powerful frame-
work for building EPICS components, including clients
(described here) and even servers (IOCs, not described).
The Python language and libraries have allowed very
powerful frameworks to be developed and rapidly used
at Diamond—this paper only hints at the range of
applications.

The language supports flexible rapid prototyping and
has provided to be a valuable integration tool. The main
drawback of the large scale application of Python is that it
can run a lot slower than corresponding C code—but this
has been a problem less frequently than might be expected.

REFERENCES

[1] Numeric Python, http://numpy.scipy.org

[2] Lightweight in-process concurrent programming, http://

pypi.python.org/pypi/greenlet

[3] Trolltech, http://trolltech.com/

[4] Riverbank Computing, http://www.

riverbankcomputing.com/static/Docs/PyQt4/

html/classes.html

[5] EDM, http://ics-web.sns.ornl.gov/edm/

[6] Asyn, http://www.aps.anl.gov/epics/modules/

soft/asyn/

[7] Stream Device 2, http://epics.web.psi.ch/software/
streamdevice/

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP024

Classical Topics Control Software: Applications and Tools

139

