
 INTEGRATION OF ALMA COMMON SOFTWARE AND NATIONAL
INSTRUMENTS LABVIEW

K. Žagar, A. Žagar, Cosylab, Ljubljana, Slovenia
B. Bauvir, G. Chiozzi, P. Duhoux, European Southern Observatory (ESO), Garching, Germany

Abstract
Among the candidate technologies for the Extremely

Large Telescope (E-ELT) are ALMA Common Software
(ACS) and LabVIEW. ACS is a CORBA-based control
system infrastructure that implements a container-
component model. It allows developers to focus on
development of components that define application logic,
with ACS-provided containers addressing infrastructural
issues of distributed control systems such as remote
procedure calls, logging, configuration, etc. LabVIEW is
a commercial solution provided by National Instruments
which allows rapid construction of user interfaces and
control loops. Control loops can execute on Windows and
Linux operating systems, as well as real-time control
systems and FPGA circuits. In this paper, we present an
approach for integration of ACS and LabVIEW. We
accessed ACS from a LabVIEW user interface (both
sending of data into ACS, and receiving data from ACS).
Also, we accessed a real-time LabVIEW process (parts of
which were executing in FPGA) from ACS – again in
both directions. From the LabVIEW perspective, the
approach is platform-independent as it is based on a
Simple TCP/IP Messaging protocol.

INTRODUCTION
ACS [1] facilitates development of complex control

systems where many types of devices need to be installed,
monitored, controlled and managed, and where numerous
instances of each device type exist. Also, ACS facilitates
development of higher-level, non-real time control
algorithms, used to coordinate work
of many devices in the system as
mandated by an organizational
workflow.

Development in ACS is
component-based: each entity in the
system, whether driver interacting
with a physical device, or a higher-
level controller, is represented as a
component. Component is defined
by a name that uniquely identifies it
within the system, interface (what
operations and attributes it
supports) and the code-base which
implements the interface. Also,
each component can have
configuration data associated with it
that specifies information relevant
at run-time (e.g., hardware
addresses). This approach
simplifies composition of complex

systems, as components can only interact with each other
through well-defined interfaces.

Technologically, ACS is built atop CORBA
middleware, and components can be developed in C++
(where real-time behavior must be achieved), Java
(higher-level logic) and Python (testing, scripting).

Apart from remote procedure calls for interaction
between components (physically implemented with
CORBA invocations), ACS also provides a message-
oriented approach where components can publish
messages or subscribe to them. CORBA Notification
Service is used as the underlying technology.

ESO started development of ACS in year 2000. It is
now used by several astronomy projects and a
synchrotron radiation source. The ACS is available under
and open-source license.

LabVIEW [2] is a product developed by National
Instruments which features an environment for
developing control graphical user interfaces and control
loops.

LabVIEW enables developers to efficiently construct
graphical user interfaces. The composition of the user
interface is visual (what-you-see-is-what-you-get). The
rich assortment of graphical widgets results in a visually
appealing panel with which the operator interacts (see
Figure 1). Also, the performance and responsiveness of
the LabVIEW user interface is in most cases sufficient.
LabVIEW user interfaces can run on Windows and Linux
platforms, and require a LabVIEW execution run-time.

LabVIEW provides a graphical programming

Figure 1: Example of a graphical user interface constructed with LabVIEW.

Proceedings of PCaPAC08, Ljubljana, Slovenia WEP013

Trendy Topics Control Solutions with FPGAs

195

environment where a developer can represent data flows
with wires and nodes (virtual instruments – VIs): a node
can have several input wires, performs an operation (e.g.,
an addition node would add the values of all inputs), and
produces the result on the output wires. Graphical widgets
(controls and indicators) can also be used as sources/sinks
for wires. VIs exist that can interact with inputs and
outputs (e.g., analog/digital I/O, serial communication,
dedicated devices, etc), and VIs for common
mathematical, statistical, and other operations are pre-
prepared. Through graphical programming, it is thus
possible to construct control loops that can be controlled
through user interaction, and their graphical
representation mimics the traditional notation used in
control engineering.

Control loops can execute on various platforms where
LabVIEW runtime is available, among them: Windows
and Linux, real-time extension for Windows (RTX), and
real-time operating systems (PharLap ETS and
VxWorks). With LabVIEW, it is also possible to develop
control loops that execute on FPGA and interact with
real-time CompactRIO processes.

The two technologies are thus largely complementary.
Were it not possible to use LabVIEW to develop control
loops and user interfaces, and ACS to manage scalable
distribution of data across the control system?
Investigation of approaches on how to achieve this was
the goal of the project whose findings we present here-in.

APPROACHES
We have studied three approaches to integrate ACS

with LabVIEW.
In the first approach, one would use the LabVIEW’s

Call Library Node mechanism, which allows invocation
of functions that must be supplied in dynamically
loadable/shared libraries (DLLs). These functions, usually
written in C, would then interact with ACS*. For example,
to make an invocation of an operation on an ACS
component, the C function would first retrieve a reference
to the component from ACS (which it would refer to by
name, given as one of the inputs to the call library node),
and then invoke a method. In C++, this mechanism can
not easily be made generic – CORBA Dynamic
Invocation Interface (DII) mechanism would need to be
used for a generic solution, or else the method name
would need to be hard-coded. This approach has been
used in EPICS [3], the Virgo projects [4] and TANGO
[5], where a generic solution was more easily achievable,
as these control system infrastructures use a narrow
interface.

In ACS, this approach is more applicable for message-
oriented communication, where the API to the
notification service remains unchanged from application
to application, and only structure of messages is
application-specific. Conversion of message structures

* Integration with C++ is also possible, but name mangling must be
prevented (e.g. with “extern C” declarations or by explicitly listing DLL
exports).

from LabVIEW clusters to C++ structs can be
generalized, as LabVIEW is capable of providing meta-
data describing its clusters. However, if the C++ structure
would not match the LabVIEW cluster (either in order or
type of its members – a likely scenario especially during
development), this would result in a serious run-time
failure.

As ACS provides significant infrastructure at all of its
nodes (container providing transparent access to logging,
configuration, alarms, remote procedure calls, etc),
significant portions of that infrastructure would need to be
embedded in the LabVIEW process. For platforms where
ACS is readily supported (e.g., Linux) this would not
have been problematic. On Windows, a large portion of
ACS would need to be adapted to support the platform.
Easiest way to achieve this is to compile using libraries
that expose the Windows API with Linux-style interface,
e.g., Cygwin [6]. This approach was taken by R. Lemke,
and he reports it to be largely successful, but there are
issues with clashes of Cygwin library and LabVIEW. On
other LabVIEW-supported platforms (e.g., VxWorks), yet
a different solution would be necessary.

In the second approach, LabVIEW provided
mechanisms for inter-process communication would be
leveraged, such as data sockets [7] or shared variables
[8].

Data sockets mandate an architecture where a data
socket server runs on a Windows host, and with which all
interacting nodes (LabVIEW GUIs or control loops)
communicate to write or read data. The socket server is
also available via an ActiveX interface. Though readily
available, the solution has some drawbacks: its scalability
and reliability is impaired (a single data sockets server),
the communication protocol provides limited mechanisms
for error detection and fault tolerance, mandates a
Windows host and the data sockets API implementation is
insufficiently portable.

Shared variables are a more novel approach to sharing
process variable data between processes. LabVIEW offers
a wide range of options to configure them, including
ability to achieve real-time performance over a dedicated
Ethernet network by carefully scheduling transmission
times of messages.

At this time, however, no API outside LabVIEW exists
that would enable external processes to exchange data
with LabVIEW. Also the on-the-wire protocol (based on
UDP/IP or TCP/IP) is proprietary. Furthermore, the level
of support for shared variables varies from platform to
platform, and on Linux, for example, it is not yet
adequate.

ARCHITECTURAL OVERVIEW
Our application (controlling azimuth and elevation axes

of a telescope) consisted of the following building blocks:
• A LabVIEW FPGA loop for motion control.
• A LabVIEW user interface for monitoring and

controlling the position of the telescope.

WEP013 Proceedings of PCaPAC08, Ljubljana, Slovenia

Trendy Topics

196

Control Solutions with FPGAs

• A LabVIEW real-time process implementing the
tracking loop. This process was running on
CompactRIO platform (VxWorks operating system)
and used SLA library [9] for computing the apparent
position of tracked objects.

• A Java ACS component with which the LabVIEW
GUI communicates to read and write data from/to
ACS.

• A C++ ACS component which communicates with
LabVIEW control loop on CompactRIO to provide
reference values and read the actual position.

The building blocks are graphically depicted in Figure
2. To implement communication between LabVIEW and
a C++/Java ACS component, we have used a lightweight
protocol atop TCP/IP mechanism which National
Instruments calls Simple TCP/IP Messaging (STM, [10]).

National Instruments provides LabVIEW virtual
instruments (VIs) for reading and writing data via this
protocol. Atop of these, we have built ACS-specific VIs
that allow subscribing to an ACS notification channel,
publishing to a channel, and invoking an ACS method.

We also implemented a C and Java API that
implements the STM protocol†. Our implementation is
independent of ACS, and is thus applicable for integration
with other control system infrastructures or independent
processes as well.

The chosen approach has an advantage that it does not
require ACS to be embedded in a LabVIEW process.
Thus, there are were no issues relating to portability: the
LabVIEW process can run from any platform capable to
host it (Linux, Windows, VxWorks), and no prior
preparation (compiling DLL libraries, placing them in
appropriate places, configuring LabVIEW call function
node VIs to locate them, etc.) is required. Also, the
coupling between the GUI and the control loop is very
loose: it is possible to transparently control a LabVIEW
control loop from an ACS process (e.g., a Java GUI or a
Python script), and to control an ACS process (e.g., a
custom device whose driver is implemented in C++) from
a LabVIEW GUI.

† The API is developed in C, and can thus be used either in C or C++
projects.

The drawback of the approach is performance:
in current implementation, a message from
LabVIEW GUI to LabVIEW control loop
traverses two ACS components, possibly
executing on different nodes on the network. In
applications where some amount of latency
(several milliseconds) is tolerable, this is
nonetheless feasible.

The approach is scalable, however, and could
be made fault-tolerant as well. Namely, ACS
could instantiate more than one instance of the
C++/Java components.

CONCLUSION
We have successfully demonstrated an

approach to integrate LabVIEW GUI or control
loop into an ACS-based system. We opted for loose
coupling of ACS and LabVIEW processes via a simple,
open TCP/IP based protocol. Our approach focused on
portability and architectural flexibility, allowing to delay
fault-tolerance, scalability and cumulative throughput
considerations until deployment time. The drawback is
increased latency of communication. For applications
where latency requirements are not high, this remains a
feasible option.

The approach is suitable for integration into non-ACS
systems as well. Also at the implementation level, we
have ensured that the Java and C API for STM is
independent from ACS, and thus directly reusable.

REFERENCES
[1] J. Schwarz et al, “The ALMA Common Software –

Dispatch from the trenches”, SPIE Astronomical
Telescopes and Instrumentation 2008, Marseille,
France

[2] National Instruments: “LabVIEW”
[3] D. Thompson and W. Blokland, “Shared Memory

Interface between LabVIEW and EPICS”,
ICALEPCS 2003, Gyeongju, Korea

[4] F. Carbognani, B. Lopez, D. Sentenac, “A GUI
Builder Environment based on LabVIEW for the
VIRGO Project”, ICALEPCS 2007, Knoxville, TN,
USA

[5] J-M Chaize, A. Götz, W-D. Klotz, J. Meyer, M.
Perez, E. Taurel and P. Verdier, “The ESRF Tango
Control System Status”, ICALEPCS 2001, San Jose,
CA, USA

[6] Cygwin, http://www.cygwin.com
[7] NI Developer Zone, “Connecting Measurement

Studio User Interface ActiveX Controls to Remote
Data”

[8] NI Developer Zone, “Using the LabVIEW Shared
Variable”

[9] P. Wallace, “SLALIB – Positional Astronomy
Library”

[10] NI Developer Zone, “A Simple TCP/IP Messaging
Protocol for LabVIEW”

ALMA Common Software (ACS)

ACS-LabVIEW Bridge

ACS component

Legend

Tracking

ACS service

ACS Notification Channel

publish

asynchronous
CORBA call

Synchronous
CORBA call

notify

notify

publish

invoke

cRIO 9014 with:
♦ NI 9505 DC brushed Servo Drive with Encoder
♦ NI 9425 32-channel Digital Input Module
♦ NI 9477 32-channel Digital Output Module

LabVIEW GUI

Simple TCP/IP
Messaging (STM)

Simple TCP/IP
Messaging (STM)

Java
STM

C
STM

General purpose library

Figure 2: Architectural overview of the chosen approach.

Proceedings of PCaPAC08, Ljubljana, Slovenia WEP013

Trendy Topics Control Solutions with FPGAs

197

