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Abstract 
Among the candidate technologies for the Extremely 

Large Telescope (E-ELT) are ALMA Common Software 
(ACS) and LabVIEW. ACS is a CORBA-based control 
system infrastructure that implements a container-
component model. It allows developers to focus on 
development of components that define application logic, 
with ACS-provided containers addressing infrastructural 
issues of distributed control systems such as remote 
procedure calls, logging, configuration, etc. LabVIEW is 
a commercial solution provided by National Instruments 
which allows rapid construction of user interfaces and 
control loops. Control loops can execute on Windows and 
Linux operating systems, as well as real-time control 
systems and FPGA circuits. In this paper, we present an 
approach for integration of ACS and LabVIEW. We 
accessed ACS from a LabVIEW user interface (both 
sending of data into ACS, and receiving data from ACS). 
Also, we accessed a real-time LabVIEW process (parts of 
which were executing in FPGA) from ACS – again in 
both directions. From the LabVIEW perspective, the 
approach is platform-independent as it is based on a 
Simple TCP/IP Messaging protocol. 

INTRODUCTION 
ACS [1] facilitates development of complex control 

systems where many types of devices need to be installed, 
monitored, controlled and managed, and where numerous 
instances of each device type exist. Also, ACS facilitates 
development of higher-level, non-real time control 
algorithms, used to coordinate work 
of many devices in the system as 
mandated by an organizational 
workflow. 

Development in ACS is 
component-based: each entity in the 
system, whether driver interacting 
with a physical device, or a higher-
level controller, is represented as a 
component. Component is defined 
by a name that uniquely identifies it 
within the system, interface (what 
operations and attributes it 
supports) and the code-base which 
implements the interface. Also, 
each component can have 
configuration data associated with it 
that specifies information relevant 
at run-time (e.g., hardware 
addresses). This approach 
simplifies composition of complex 

systems, as components can only interact with each other 
through well-defined interfaces. 

Technologically, ACS is built atop CORBA 
middleware, and components can be developed in C++ 
(where real-time behavior must be achieved), Java 
(higher-level logic) and Python (testing, scripting).  

Apart from remote procedure calls for interaction 
between components (physically implemented with 
CORBA invocations), ACS also provides a message-
oriented approach where components can publish 
messages or subscribe to them. CORBA Notification 
Service is used as the underlying technology. 

ESO started development of ACS in year 2000. It is 
now used by several astronomy projects and a 
synchrotron radiation source. The ACS is available under 
and open-source license. 

LabVIEW [2] is a product developed by National 
Instruments which features an environment for 
developing control graphical user interfaces and control 
loops. 

LabVIEW enables developers to efficiently construct 
graphical user interfaces. The composition of the user 
interface is visual (what-you-see-is-what-you-get). The 
rich assortment of graphical widgets results in a visually 
appealing panel with which the operator interacts (see 
Figure 1). Also, the performance and responsiveness of 
the LabVIEW user interface is in most cases sufficient. 
LabVIEW user interfaces can run on Windows and Linux 
platforms, and require a LabVIEW execution run-time.  

LabVIEW provides a graphical programming 

 
Figure 1: Example of a graphical user interface constructed with LabVIEW. 
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environment where a developer can represent data flows 
with wires and nodes (virtual instruments – VIs): a node 
can have several input wires, performs an operation (e.g., 
an addition node would add the values of all inputs), and 
produces the result on the output wires. Graphical widgets 
(controls and indicators) can also be used as sources/sinks 
for wires. VIs exist that can interact with inputs and 
outputs (e.g., analog/digital I/O, serial communication, 
dedicated devices, etc), and VIs for common 
mathematical, statistical, and other operations are pre-
prepared. Through graphical programming, it is thus 
possible to construct control loops that can be controlled 
through user interaction, and their graphical 
representation mimics the traditional notation used in 
control engineering. 

Control loops can execute on various platforms where 
LabVIEW runtime is available, among them: Windows 
and Linux, real-time extension for Windows (RTX), and 
real-time operating systems (PharLap ETS and 
VxWorks). With LabVIEW, it is also possible to develop 
control loops that execute on FPGA and interact with 
real-time CompactRIO processes. 

The two technologies are thus largely complementary. 
Were it not possible to use LabVIEW to develop control 
loops and user interfaces, and ACS to manage scalable 
distribution of data across the control system? 
Investigation of approaches on how to achieve this was 
the goal of the project whose findings we present here-in. 

APPROACHES 
We have studied three approaches to integrate ACS 

with LabVIEW. 
In the first approach, one would use the LabVIEW’s 

Call Library Node mechanism, which allows invocation 
of functions that must be supplied in dynamically 
loadable/shared libraries (DLLs). These functions, usually 
written in C, would then interact with ACS*. For example, 
to make an invocation of an operation on an ACS 
component, the C function would first retrieve a reference 
to the component from ACS (which it would refer to by 
name, given as one of the inputs to the call library node), 
and then invoke a method. In C++, this mechanism can 
not easily be made generic – CORBA Dynamic 
Invocation Interface (DII) mechanism would need to be 
used for a generic solution, or else the method name 
would need to be hard-coded. This approach has been 
used in EPICS [3], the Virgo projects [4] and TANGO 
[5], where a generic solution was more easily achievable, 
as these control system infrastructures use a narrow 
interface. 

In ACS, this approach is more applicable for message-
oriented communication, where the API to the 
notification service remains unchanged from application 
to application, and only structure of messages is 
application-specific. Conversion of message structures 
                                                           
* Integration with C++ is also possible, but name mangling must be 
prevented (e.g. with “extern C” declarations or by explicitly listing DLL 
exports). 

from LabVIEW clusters to C++ structs can be 
generalized, as LabVIEW is capable of providing meta-
data describing its clusters. However, if the C++ structure 
would not match the LabVIEW cluster (either in order or 
type of its members – a likely scenario especially during 
development), this would result in a serious run-time 
failure. 

As ACS provides significant infrastructure at all of its 
nodes (container providing transparent access to logging, 
configuration, alarms, remote procedure calls, etc), 
significant portions of that infrastructure would need to be 
embedded in the LabVIEW process. For platforms where 
ACS is readily supported (e.g., Linux) this would not 
have been problematic. On Windows, a large portion of 
ACS would need to be adapted to support the platform. 
Easiest way to achieve this is to compile using libraries 
that expose the Windows API with Linux-style interface, 
e.g., Cygwin [6]. This approach was taken by R. Lemke, 
and he reports it to be largely successful, but there are 
issues with clashes of Cygwin library and LabVIEW. On 
other LabVIEW-supported platforms (e.g., VxWorks), yet 
a different solution would be necessary. 

In the second approach, LabVIEW provided 
mechanisms for inter-process communication would be 
leveraged, such as data sockets [7] or shared variables 
[8]. 

Data sockets mandate an architecture where a data 
socket server runs on a Windows host, and with which all 
interacting nodes (LabVIEW GUIs or control loops) 
communicate to write or read data. The socket server is 
also available via an ActiveX interface. Though readily 
available, the solution has some drawbacks: its scalability 
and reliability is impaired (a single data sockets server), 
the communication protocol provides limited mechanisms 
for error detection and fault tolerance, mandates a 
Windows host and the data sockets API implementation is 
insufficiently portable. 

Shared variables are a more novel approach to sharing 
process variable data between processes. LabVIEW offers 
a wide range of options to configure them, including 
ability to achieve real-time performance over a dedicated 
Ethernet network by carefully scheduling transmission 
times of messages. 

At this time, however, no API outside LabVIEW exists 
that would enable external processes to exchange data 
with LabVIEW. Also the on-the-wire protocol (based on 
UDP/IP or TCP/IP) is proprietary. Furthermore, the level 
of support for shared variables varies from platform to 
platform, and on Linux, for example, it is not yet 
adequate. 

ARCHITECTURAL OVERVIEW 
Our application (controlling azimuth and elevation axes 

of a telescope) consisted of the following building blocks: 
• A LabVIEW FPGA loop for motion control. 
• A LabVIEW user interface for monitoring and 

controlling the position of the telescope. 
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• A LabVIEW real-time process implementing the 
tracking loop. This process was running on 
CompactRIO platform (VxWorks operating system) 
and used SLA library [9] for computing the apparent 
position of tracked objects. 

• A Java ACS component with which the LabVIEW 
GUI communicates to read and write data from/to 
ACS. 

• A C++ ACS component which communicates with 
LabVIEW control loop on CompactRIO to provide 
reference values and read the actual position. 

The building blocks are graphically depicted in Figure 
2. To implement communication between LabVIEW and 
a C++/Java ACS component, we have used a lightweight 
protocol atop TCP/IP mechanism which National 
Instruments calls Simple TCP/IP Messaging (STM, [10]). 

National Instruments provides LabVIEW virtual 
instruments (VIs) for reading and writing data via this 
protocol. Atop of these, we have built ACS-specific VIs 
that allow subscribing to an ACS notification channel, 
publishing to a channel, and invoking an ACS method. 

We also implemented a C and Java API that 
implements the STM protocol†. Our implementation is 
independent of ACS, and is thus applicable for integration 
with other control system infrastructures or independent 
processes as well. 

The chosen approach has an advantage that it does not 
require ACS to be embedded in a LabVIEW process. 
Thus, there are were no issues relating to portability: the 
LabVIEW process can run from any platform capable to 
host it (Linux, Windows, VxWorks), and no prior 
preparation (compiling DLL libraries, placing them in 
appropriate places, configuring LabVIEW call function 
node VIs to locate them, etc.) is required. Also, the 
coupling between the GUI and the control loop is very 
loose: it is possible to transparently control a LabVIEW 
control loop from an ACS process (e.g., a Java GUI or a 
Python script), and to control an ACS process (e.g., a 
custom device whose driver is implemented in C++) from 
a LabVIEW GUI. 
                                                           
† The API is developed in C, and can thus be used either in C or C++ 
projects. 

The drawback of the approach is performance: 
in current implementation, a message from 
LabVIEW GUI to LabVIEW control loop 
traverses two ACS components, possibly 
executing on different nodes on the network. In 
applications where some amount of latency 
(several milliseconds) is tolerable, this is 
nonetheless feasible. 

The approach is scalable, however, and could 
be made fault-tolerant as well. Namely, ACS 
could instantiate more than one instance of the 
C++/Java components. 

CONCLUSION 
We have successfully demonstrated an 

approach to integrate LabVIEW GUI or control 
loop into an ACS-based system. We opted for loose 
coupling of ACS and LabVIEW processes via a simple, 
open TCP/IP based protocol. Our approach focused on 
portability and architectural flexibility, allowing to delay 
fault-tolerance, scalability and cumulative throughput 
considerations until deployment time. The drawback is 
increased latency of communication. For applications 
where latency requirements are not high, this remains a 
feasible option. 

The approach is suitable for integration into non-ACS 
systems as well. Also at the implementation level, we 
have ensured that the Java and C API for STM is 
independent from ACS, and thus directly reusable. 
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Figure 2: Architectural overview of the chosen approach. 
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