Proceedings of PCaPACO8, Ljubljana, Slovenia

WEPO15

CONTROL ROOM GRAPHICAL APPLICATIONS FOR THE ELETTRA
NEW INJECTOR

G. Strangolino, C. Scafuri, G. Scalamera, L. Zambon, Sincrotrone Trieste S.C.p.A., Trieste, Italy
V. Forchi, ESO, Garching bei Miinchen

Abstract

Integrating the Tango Control System with the Qt
framework lead to an efficient multithreaded architecture,
named QTango, whose components have allowed the
design and implementation of Graphical User Interfaces
aimed at controlling the Elettra's new injector. This paper
describes the structure of the library together with some
generic and specific tools taking advantage of the
QOTango infrastructure.

INTRODUCTION

Elettra is a 2.5GeV 3rd generation light source in
operation since October 1993. For the commissioning and
operation of the new Elettra injector [1, 2] and for the
design of the future Graphical User Interfaces aimed at
interacting with the FERMI@Elettra single-pass FEL user
facility control system, a QT4 [3] and Tango [4] based
framework has been developed. All the control room
graphical applications are built upon this infrastructure,
called QTango. QTango allows simple functionalities for
building control panels that are Tango aware: creation of
device proxies, event subscription with polling fallback in
case of registration failure, device centric threads, error
logs, et cetera. The communication layer sits below a QT
based group of widgets wearing a pleasant, easy to use
and human computer interaction oriented graphical
interface.

OTANGO ARCHITECTURE

Overview

QTango is a framework founded on a set of widgets
based on the QT libraries, named gfcontrols, and a Tango
specific communication layer, named gtangocore.
QOTango combines gtcontrols and gtangocore to provide,
at a higher level, easy creation of widgets ready to
connect and interact with the Tango distributed control
system. The full integration with the QT4 designer,
allows a simple drag and drop of a handful of widgets
onto a control panel.

Tango Qt4

Figure 1: Representation of QTango underlying layers.

Trendy Topics

QTANGOCORE

Introduction

qtangocore represents the lower layer of the QTango
framework. It is cognizant of all Tango aspects, but it is
not aware of the representation of the data it is in charge
of providing to its end user (e.g. the graphical objects). It
is based on QtCore threads and signal/slots infrastructure.
The other mainstay of gfangocore is represented by the
libraries provided by Tango, allowing to create device
proxies, to read and write on them, to destroy them when
no more in use, and to subscribe for asynchronous events
delivered by the Tango distributed framework itself.

Communication Handles Creation and TAction
Objects As a Mean of Information Exchange

The interest of an object to read or write a quantity on a
device of the control system is declared by the so called
subscription to a Tango source. A source is identified by
the device name plus the attribute or the command the
subscriber is interested in. For example, the source
p/power_supply/psch_bl1.1/Current will allow the
subscriber to read the current from the power supply
identified by the sequence domain/family/member. Inside
qtangocore the QtangoComProxyReader and the
QOtangoComProxyWriter represent the handles which an
object needs to read from or write to a tango device,
respectively. The proxies mentioned above are designed
with the purpose of providing a simple interface for a OT
widget representing disparate quantities. They really
cannot inherit from QT's QObject (being a QObject would
indeed provide the necessary signal/slot architecture
needed to refresh the graphical interfaces), but must have
a QObject handle (see Figure 5).

The QtangoCommunicationHandle represents the mean
through which a widget or some other object who wants
to benefit from gtangocore can set its source to read and
write tango attributes or to impart commands. The source
configuration process develops through a number of
stages:

*a syntactical validation of the string representing the
source point;

ethe creation of a subscriber proxy, which tries
accomplishing the configuration of the handle;

ethe subscriber proxy creates one device thread per
device proxy, allocating a new object, if none is yet
existing for that source, or retrieving an already existing
one;

sthe device thread obtained is immediately asked to
create, through an ActionFactory, a new action (a
TAction), which is the communicator that links the handle
to the end user (e.g. a gtango widget).

Development and Application Frameworks

201



WEPO15

Observations

Discussing this new version of QTango/qtangocore one
must emphasize that just one thread per tango device is
created, and that this single proxy reads and writes its
attributes or passes on its own commands. Moreover, if
more than one reader is configured with the same source,
reading period and mode (polled or event driven) the
same TAction is the unique bridge from the reader (writer)
and the fango point. Finally, the TAction is created and
performs its tasks inside a device thread. The latter lives
in a different thread with respect to the main one. This
expedient leaves in the background the gtangocore/tango
data transfer, allowing the main thread to be fully
responsive for the human interaction, also in case of
network or device hangup.

QTCONTROLS

qtcontrols is a library made up of a set of widgets
designed to represent efficiently and user friendly the
tango quantities to read from and write to the control
system devices. Thus, one can find labels, apply buttons,
circular and linear gauges, spin boxes and other primitive
graphical objects. Some of them are simply extensions of
existing QT widgets, whilst others are tailored to fulfil
peculiar requirements, e.g. the gauges.

QTANGO

Introduction

QOTango is the glue that combines gtcontrols and
qtangocore with the purpose to provide at a higher level a
widget suited to clearly represent a tango value, be it a
scalar or a spectrum, with or without a measurement unit,
having or not warning and alarm thresholds and, at the
same time, an object that easily configures itself to be
able to perform read and write operations on the fango
devices. From the developer point of view, the integration
of the gtango widgets into the QT4 designer grants a fast
and immediate design of a control panel that manages the
visualization and the dispatch of fango quantities,
handling contextually the device, network and end user
errors.

Implementation

A qtango element is a gqtcontrols widget and a
qtangocore communication proxy reader or writer.
Simply inheriting from both a particular gtcontrols widget
and QtangoComProxyReader or Writer, each gtango class
is potentially a fango reader or writer. Calling setSource()
on the composite object, with the tango source point as
parameter, initiates, configures and starts the reader (or
the writer).

In addition, a QTango widget can conserve the history
of a tango attribute and display it through a plot of the
tango values read over time.

Eventually, a so called helper application can be
associated to a QTango object. It can be launched directly
from the widget simply right clicking with the mouse.

The figure 5 illustrates all these features providing a
detailed class diagram for QTango.

Trendy Topics
202

Proceedings of PCaPACO8, Ljubljana, Slovenia

CONTROL ROOM GRAPHICAL
APPLICATIONS FOR THE ELETTRA
NEW INJECTOR

All the operator control panels for the Booster have
been developed with the QTango, Ot and fango libraries.
In the following subsections we provide some examples
of graphical user interfaces currently in use.

Genericlool

The generictool is a graphical user interface that
gathers and displays a subset of tango quantities
(attributes or commands) peculiar to a class of devices.
For instance, a class of power supplies will typically
represent the state of the device, display and set the
current, and provide some standard commands, such as
On, Standby, Off, Reset. The screenshot in figure 2 shows
the generictool that, given a family of power supplies
(b/power_supply), connects to all of its members and
dynamically builds the control interface.

- ‘Generic Mool - bjpower supply/ps+(onbambam)) SEE
Monitoring devices under "bipower_supply/ps+"
State | Current ]
- ! | on ‘
psb_b running [ 342.185 a] Set
: | [ Standby |
psch_bl1.1 oN | 0.000 [A] set ||
psch_b17.1 onN [ -01s0a Set | i ‘
psch_b1s.1 on [ 01594 Set | Reset |
psch_b21.1 oN 0.000 [A] || set | | StartCycling ‘
psch_b23.1 an 0058 [A] | | set
psch_b2s.1 on 0.090 [2] set ||
psch_b3.1 on [oa7oa [ Set
{Last read (E).Fri Oct 10 09:49:43 2008 =T
psch_b5.1 om [ USEUTAT Set
psch_b7.1 on [ 00s0ta ) set || e —
0 | (1) ] [ Showiess ]
Loaded 27 tango devices to be monitered y

Figure 2: The generictool connects to a family of devices
that provide a common interface.

SaveRestore

The saverestore control room application is in charge of
making a snapshot at a certain instant of a confext
defined by a set of tango quantities. The snapshot of the
tango attributes with their values is stored into a mysql
database. Afterwards, the values saved can be restored on
the equipments. Both at the moment of the save process
and the restore one, saverestore warns the user if some
devices are not responding or one of the processes is
unable to complete correctly. The application can perform
also the following operations:

*a comparison between the current values on the field
and a stored snapshot,

*a comparison between two snapshots;

+a display of the save/restore history;

ereads and saves to text files of the snapshots.

A screenshot of the saverestore panel is available in
Figure 3. The saverestore panel is used daily by the
operators to setup all the booster plants for the storage
ring refill procedure.

Development and Application Frameworks



Proceedings of PCaPACO8, Ljubljana, Slovenia

Information about the Snapshot 7:

virite velue | Read value
e 127205 127976

atnor =] [ [omves
ipowEE SRATASER P T

11
080422
25

Plpower_supplylpsa_pi. s

A simple control room panel

The figure 4 finally reports a sample control room
panel, with a gauge, some labels and a widget to set the
current. This is a specimen of what one is able to do by
means of the QTango library. The panel has been
designed simply dragging and dropping widgets in the
Trolltech's Qt4 designer without any additional hand
written code.

WEPO15

CYCLE

Remote CC

Current

Set Point: 034
Qutput ON

Power ON

Figure 4: A sample QTango based application.

REFERENCES

[1] M. Svandrlik et al., “Overview of the Status of the
Elettra Booster Project”, these proceedings

[2] M. Lonza et. Al, “Implementation and Operation of
the Elettra Booster Control System”, EPAC 2008,
Genoa, Italy

[3] Qt for Application Development, http://trolltech.com

[4] Tango, http://www.tango-controls.org

QTangoViewTrend
QLabel %
ZF. QTangoHelperApplication
ELabel QTangoComProxyReader ?
QTangoAutoConfiguration 0.1 TangoConfigurationParameters
-d_confParams

-d_gtangoHanlel-1

0.1
QTangoCommunicationHandle ——— > QTangoComProxyWriter QPushButton
-d_gtangoHandlg
0.1 (-d_action
TAction

-__actiofffactory | 0.1

ActionFactory

Figure 5: The class diagram of the QTango framework. The QTango widgets are represented in green color, the
qtangocore classes are blue, the gtcontrols widgets are orange and the base QT4 widgets are yellow.

Development and Application Frameworks

203

Trendy Topics



