
AN EMBEDDED DISTRIBUTED SYSTEM
BASED ON TINE AND WINDOWS CE

A. Pazos#, U. Ristau and S. Fiedler, European Molecular Biology Laboratory EMBL, Hamburg
Unit, Germany

P. Duval, DESY, Hamburg, Germany

Abstract
We present an embedded distributed system based on

the integration of the control system (TINE) inside an
embedded-PC running Windows CE RTOS. As Windows
CE is different to Desktop Windows and requires a cross-
compilation of the source modules, porting TINE to
Windows CE turned out to be straightforward, but non-
trivial. Having a dedicated Windows CE TINE library
allows to create device servers inside the embedded
operating system, close to the hardware application layer.
The embedded-PC is the master of the hardware line,
where different hardware devices are connected through a
real-time Ethernet field bus. On the one hand, there is a
low level control of this hardware performed by a set of
programmable logic controllers (PLC) running in fast
cycling and on the other hand, there is a higher level
control performed by the TINE server devices. The server
is responsible for providing an interface to the external
world, exporting the functionality of the system through
the Ethernet control network. It is also possible that the
server acts as a TINE client for other external servers,
constituting a network of embedded nodes. We present a
practical development that demonstrates the proposed
system.

INTRODUCTION
Beamline control software needs flexible and robust

system architecture. Although the main parts of the
system are fixed, it is very common to extend them and to
have temporal devices running together with the existing
ones. Moreover, the operation of each component
involves synchronization between the different hardware
components and the possibility of remote control. Fast
feedback systems are also desirable. This makes it
necessary to have a distributed system. In this point we
identify two kinds of distribution. The first one is
hardware related, where the individual hardware
components (motor controller, analogue/digital signals,
sensors, etc) are connected together through a common
field bus system. Architectures with more than one field
bus or mixed with the computer bus are also common [1].
The second one is the distribution of the control software
thanks to the use of a control system (CS). EPICS, TINE,
TANGO are examples of CS used in the accelerator
control community [2]. Normally they are based on a
client/server architecture. The server is responsible for the
hardware access and for the distribution of the system

parameters using an Ethernet network. The central
services provided by the control system, such as
archiving, alarming, naming and logging, etc. are also
crucial in this type of structure. In many systems
different layers of complexity in the server side are also
considered.

Recently, one sees the emergence of real-time Ethernet
(RTE) buses [3]. These are an alternative to the afore-
mentioned field buses. Both distribution points (hardware
and software) are in this case based on an Ethernet
network. This makes for less complexity in the integration
of the system components. At this point we present a
complete system based on embedded-PC control, which
will treat both distribution points together. We combine
the embedded hardware with the embedded software. In
this design the integration of the control system running
inside the embedded-PC and a close access to the
hardware is essential. This means that all the logic (low-
level and high-level) can run inside the embedded-PC.
Similar systems based on a VME bus have been used in
many places with the inconvenience of the difficult
extension of the system and the high cost of the hardware
[4]. Our solution is based on the known Windows CE OS
running in an embedded-PC together with the TINE
control system. The rest of the hardware is connected by
means of a real-time Ethernet field bus.

SYSTEM OVERVIEW
In this section we present a description of the designed

system that fulfils many of the requirements of beamline
software automation. The main piece of our embedded
distributed system is an embedded-PC running Windows
CE OS. This is a compact DIN-rail Industrial PC (IPC).
The IPC is the master of the real-time Ethernet field bus
where different hardware devices can be connected. The
system provides a low level programming interface,
where a set of PLCs runs in a fast cycling mode. At this
point the low-level functionality accessing the hardware is
solved. There is the necessity of running higher level
software that has direct access to the control of the PLC.
The integration of the control system inside the OS has to
be performed.

All the components of the system are well known and
proven technologies, close to the open source world and
not dependent on specific hardware developments. This
makes it a flexible and extendable system.

The following figure (Fig. 1) shows a schematic
representation of the design of the system.

#andres.pazos@embl-hamburg.de

WEX04 Proceedings of PCaPAC08, Ljubljana, Slovenia

Trendy Topics

148

Embedded Device Control

 Figure 1: Distributed embedded design.

Windows CE
Windows CE is a 32-bit architecture operating system

(OS) released by Microsoft for covering a full range of
embedded devices. Its application goes from mobile
devices to industrial automation systems [5]. It is real-
time, lightweight, multithreaded and component-based
OS. This makes it possible to build a very light kernel by
only selecting the components one needs to support, for
example an optional graphical user interface. It has a
priority based pre-emptive thread scheduler, supports 256
levels of priority and synchronization objects such as
semaphores, mutexes and critical sections are also
available.

The first thing one learns when using Windows CE is
that it is not like the Windows desktop OS. Specific tools
for programming are necessary and also new compatible
libraries. The last release of the OS is Windows CE 6.0
(2008). This has been an important improvement in terms
of available resources of the OS, but always trying to
maintain it as a small footprint. The most radical
improvements have been the increase from 32 processes
to 32000, and the virtual memory from 32 MB to 2 GB.
Windows CE is classified as a hard real-time operating
system (RTOS) [6]. This special feature and the full
control of the OS make it very attractive for automation
applications.

A specific programming infrastructure is necessary in
order to develop software for the WINDOWS CE OS.
The standard way of proceeding in order to develop a
Windows CE application is to implement the software in
a desktop PC. The first step is to choose the development
environment. We have selected the Microsoft embedded
Visual Studio 4.0 which is freely available from
Microsoft www.microsoft.com/downloads. The standard
supported programming languages are C/C++,
VisualBasic and C#. There is also support for Java from
third-party development environments. We have focused
our server development in C/C++ like the kernel of the
TINE libraries.

It is also necessary to install a software development kit
(SDK) of the specific Windows CE before starting a
project. This is normally provided by the device
manufacturer and not by Microsoft. There are also
standard SDK that support the operative system in general
provided by Microsoft. Before testing the software into
the real device, it is very convenient to use the Windows
CE emulator. Like with the SDK, there are specific device
emulators and general ones. When you want to develop a
hardware application or a network application the
emulator can be useful only in first term. It is also
possible to debug the application running it directly in the
device. The prerequisite is to establish a connection
between the desktop PC and the Windows CE device.

Control System
The higher level distribution of the system is possible
thanks to the use of the TINE (Three-fold Integrated
Network Environment) CS [7]. This provides the required
network services as well as central services of archiving,
alarming, naming and logging. It is a multi-platform CS
supporting Windows, UNIX, Linux, MAC OS, VxWorks,
and others. But until now it was not support for the
Windows CE OS. In order to integrate TINE inside the
Windows CE a cross-compilation of the Windows source
code was necessary. A first beta version has been
released for the architecture x86 (February 2008). The
service pipe and remote pipe options are not available for
the Windows CE version. Two new files have been added
to wrap the unsupported windows functions under CE
(wincelib.c and wincelib.h). The final code is fully
compatible with the other TINE distributions and the
integration into WindowsCE is transparent to the user. A
Windows CE version of the TINE server example
sineServer was also compiled and tested under Windows
CE 6.0. The common device interface (CDI) [8] and the
hardware plugs have likewise been cross-compiled and
tested with real hardware under CE. This will be detailed
in the next section. Most porting issues were related to
ANSI string and time functions. This is because Windows
CE uses Unicode coding, so in many cases it is necessary
to convert ANSI functions or use the TCHAR library.
Also several porting difficulties were related with the set-
up of a correct Windows CE programming environment.
An infrastructure and knowledge for this family of
embedded system is now available.

PRACTICAL APPLICATION
A testing prototype that follows the presented ideas has

been implemented. This is composed by a 1 GHz Intel
embedded-PC provided by Beckhoff (www.beckhoff.de).
The operating system is a light-weight compilation of the
Windows CE 6.0 OS with a size of 20 Mbytes.

Hardware-side
The embedded-PC, as mentioned beforehand, is the

master of the real-time Ethernet where a set up of
hardware is connected. In our case, we use the standard

Proceedings of PCaPAC08, Ljubljana, Slovenia WEX04

Trendy Topics Embedded Device Control

149

EtherCAT (www.ethercat.org). The testing prototype is
constituted by two stepper motor controllers with three
different kinds of encoders (linear encoder, LDVT and
potentiometers).

Software-side
On the software side, a low-level PLC program was

developed, following a simple state machine. Every
transition in the state machine is steered from an external
TINE device server that talks directly to the PLC
program. An interchange of data is possible between both
layers. We have implemented within our device server
both a polling system, monitoring functions with a cycle
of 250 ms, and also an event system, where callback
functions wait for a value change. At this stage, the server
that directly accesses the PLC program has been semi-
automatically generated by CDI. This CDI library
provides, by filling a data sheet, an automatically
generated TINE server that maps the PLC variables. The
procedure in cross-compiling the CDI layer is very
similar to that of the TINE CS. In the embedded-PC, we
can run many different TINE device servers. In our case,
we access the control network to get some relevant data
of other servers and correlate it with the data of the
connected hardware. Finally, an external TINE client was
developed. TINE provides a rich API for programming
clients (C++, Java, Visual Basic, Labview). At this point,
a Labview client which runs in an external PC was
developed. Here we have implemented a thin client,
because the logic was included inside the TINE server
layer. It is also compatible in the present design to create
rich clients. A screenshot of the system is presented in the
next figure (Fig.).

Figure 2: Labview TINE Client of the practical
application

CONCLUSIONS
With this approach we present a final embedded

distributed system. This is a low-cost solution compared
to other embedded systems such as VME. We have
released a beta version of the TINE Windows CE

compilation already available in http://tine.desy.de. This
is the first open source control system running embedded
in the Windows CE OS family. Real time possibilities are
also possible thanks to the capabilities of the OS. Future
efforts have to be undertaken in this line, in order to
synchronize the hardware layer together with the server
devices. We have provided a new programming
framework of embedded programming inside Windows
CE. Although Windows Desktop programming expertise
is very helpful for entering the Windows CE embedded
community, new expertise is needed.

As we have explained, we provide a complete solution
making the connection of the server layer to the hardware
layer independent of the network. More security issues
are possible, implementing the logic of the system inside
the embedded-PC, which is powerful enough to perform
these operations.

Besides Microsoft, there are very active communities
supporting Windows CE, as well as forums, etc. With
regard to the control system, the power and the flexibility
of TINE demonstrates that it is possible to adapt it to new
incoming systems, programming languages or
architectures. The possibility of running the control
system in mobile devices has been not yet investigated,
but with the availability of TINE inside Windows CE now
it is also possible to run it in Windows Mobile OS. This
makes possible to program thin and rich clients that run
inside a mobile device like a PDA. This is a line of future
developments which includes also the combination with
wireless networks.

REFERENCES
[1] R. Bacher, “The New Control System for the Future

Low-Emittance Light Source PETRA3 at DESY:
from Conceptual Design Work to Realization”,
ICALEPS’07, Knoxville, Tennessee USA, 2007 ,
TPPB27, p.217

[2] P. Duval and Z. Kakucs, “The Babylonization of
Control Systems Part II- the Rise of Fallen Tower”,
ICALEPS’03, Gyeongju, Korea, 2003, p. 513

[3] R. Zurawski and L. Lavagno

”

Embedded Systems:
Towards Networking of Embedded Systems”, from
Embedded Systems Handbook, ISBN 0-8493-2824

[4] J. Yan and et al, “Ethernet Based Embedded IOC for
FEL Control System”, ICALEPS’07, Knoxville,
Tennessee, 2007, FOAB03, p.720

[5] “Windows CE 5.0 in Automation Technology
Applications”, Beckhoff PControl Magazine, May
2006

[6] “Windows CE 5.0 on an x86 Platform”, RTOS
Evaluation Program, Dedicated Systems Experts,
EVA-2.9-TST-CE-x86-01. Oct 2004

[7] P. Bartkiewicz and P. Duval. “TINE as an accelerator
control system at DESY” Meas Sci Technol,
18:2379–2386, 2007, p. 2379-2386

[8] P. Duval, H. Wu, “Using the Common Device
Interface in TINE”, PCaPAC’06, Virginia, USA,
2006

.

2

WEX04 Proceedings of PCaPAC08, Ljubljana, Slovenia

Trendy Topics

150

Embedded Device Control

