
QUARK: A DYNAMIC SDLC METHODOLOGY*

V. Vuppala, J. Vincent, NSCL, East Lansing, MI 48824, USA. #

Abstract
No single Software Development Life-cycle (SDLC)

methodology works well for all types of software
projects. The project may require a methodology that can
be very predictive to very adaptive based on
characteristics such as requirements volatility,
requirements clarity, project criticality, complexity, and
size. We describe a new iterative approach that can vary
from being more adaptive to being more predictive during
its iterations. The project characteristics change with
iterations, and the SDLC adjusts accordingly by changing
its parameters. We also discuss the results of using this
methodology for projects at National Superconducting
Cyclotron Laboratory (NSCL).

INTRODUCTION
Last few decades have seen an evolution of SDLC

models to address the software-crisis. Some of these are
Waterfall, Spiral, V-Process, RUP, and Agile among
others. Each model has its advantages and drawbacks, and
not all of them work for all types of software projects [1].
Some of them are predictable in terms of cost and
schedule but rigid in terms of requirements, whereas
others are adaptive to changes but less predictive.

In our organization there was a need to implement
processes to instil engineering rigor into software
development. The following were the requirements for the
process model:
• Provide transparency and predictability
• Work with limited customer availability
• Not overly bureaucratic, low overhead
• Support project management
• Support critical and non-critical systems
We evaluated various models but found them to be

inadequate for our needs. Many organizations, especially
in the software industry, choose from a set of SDLC
models based on the project characteristics. This was not
an option for us, as it required the project team to be
proficient in multiple software development
methodologies. As a result, we developed a set of
processes for software development and project
management, which resulted in the Quark Model (QM). It
is based on CMMI-Dev 1.2, PMBOK 4, and ISO 9000-3
standards.

Iterations
QM uses an iterative approach to software

development. QM iterations are parameterized, and
governed by the following parameters (QMPs):

• Duration: The duration, in terms of calendar time,
of the iteration

• Change Control: Specification of Major and Minor
scope changes

• Documentation: The detail and amount of
documentation

• Communication: Meeting intervals and duration
within project team, and with Customer

• Planning: Level of detail in planning
• Quality Controls: Frequency of Design and Code

reviews, and test methodology.
By adjusting the QMPs, for each iteration, the process

can be adjusted from being more adaptive to being more
predictive, and anywhere in-between.

Projects
Projects are central to the QM model. A software

project is a temporary endeavour undertaken to create a
unique software product [2]. It is characterized by certain
attributed (PCTs). Some of the PCTs that vary during the
execution of a project are:
• Project Team Requirement Clarity: Project team’s

understanding of the requirements
• Customer Requirement Clarity: Customer’s

understanding of the requirements
• Size: Size of the project in terms of cost, code

base, team size, etc
• Estimate Confidence Level: Accuracy of cost and

schedule estimates
• Technology Expertise: Familiarity with the

solution technology
Some of the PCTs remain relatively constant during the

course of the project, such as criticality of the project,
safety and security requirements, quality requirements,
timeline constraints, customer Availability, bespoke or
custom software, contract type, and team location.

QUARK MODEL
Figure 1 illustrates the Quark Process Model. The PCTs

Figure 1: Quark Process Model.

Email Addresses: {vuppala,vincent}@nscl.msu.edu
* This work is funded by National Science Foundation and Michigan
State University

FRCOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

208

Project management

and performance (of previous iteration) are used to
generate QMPs. The QMPs drive the next iteration, which
may result in the modification of the PCTs. Iterations are
useful to garner feedback but incur the overhead of test
and release management. Hence the number of iterations
should be optimized. The idea is to start with shorter
duration iterations, and move to longer iterations as the
clarity of requirements improves.

Development Process
Figure 2 depicts QM’s software development process.

It consists of the following major activities:
• Refine Requirements and Architecture
• Plan for iteration or release (PFI)
• Refine design and test plans
• Code, Refactor, Unit Test (CRUT)
• Release
• Deploy and Test
• Review
• Perform User Acceptance Test (UAT)
At the end of each iteration, modifications to the scope,

if any, are evaluated. If the change is minor, the next
iteration is initiated. However, if the change is major, a
Change Request is generated, and the Perform Change
Control (PCC) process is initiated. PCC is a Project
Management level process, and can result in iteration
through the Plan process (see below).

In QM, software product goes through release process
even for integration tests. This helps with testing of the
installation process. Not all releases are sent to the
Customer for UAT, and UAT can be proceed in parallel
with the execution of next iteration i.e. the next iteration
need not wait for feedback from UAT. Configuration
management is performed only for production releases.

Project Management
Project Management (PM) is an integral part of QM.

Figure 3 shows the QM project management processes

with their inputs and outputs. These processes are based
on PMBOK-4 [2] but are different especially the Initiate
process. Goals of the Initiate process are to define the
scope, develop the solution strategy, and estimate the cost.
The results of these activities are documented in
Preliminary Project Plan (PPP). PPP is refined in the
subsequent process, resulting in the Project Plan (PP). PP
also includes the schedule, budget, and plans for quality,
risk, communication, and procurement. The level of detail
in PP is dictated by the QPMs. The Execute process
consists of the following activities:
• Acquire and manage the project team
• Conduct procurements, if any
• Perform quality audits (design and code reviews)
• Develop Software using QM Development Process
The Monitor and Control process runs in parallel to

other activities. It periodically evaluates project
performance, procurement status, risks, and quality. It
reports project status to stakeholders. The last step in the
PM processes is to close the project. Some of the
activities here are:
• Obtain Customer feedback and acceptance
• Close procurement activities, if any
• Summarize Lessons Learned, project performance,

and customer feedback in Project Closure Report
(PCR)

• Archive project related files, and release the team

Project Performance
 QM uses Earned Value Management (EVM) [3] to

report project performance. EVM is part of the Project
Status Report and is measured periodically, generally
every week. A Cost Performance Index (CPI) of less than
1.0 indicates that the effort was underestimated, and the
project will be over budget if continued at the same pace.
A Schedule Performance Index (SPI = EV/PV) below 1.0
indicates that resources were under-allocated, and the
project will be delayed. Similarly a CPI of more than 1.0

Figure 2: Quark Software Development Processes.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOAA03

System Engineering Project management

209

indicates overestimation of effort, and an SPI of more
than 1.0 indicates over-allocation of resources. The CPI
and SPI values are used to adjust the QPMs for the next
iteration.

Documentation
The documents are refined iteratively. QPMs dictate the

level of documentation detail. The requirement
specifications and the design documents are modified to
be in sync with the CRUT activities of the last iteration.
This is essential for software maintenance. Some of the
required QM documents are Project Plan, Requirement
Specifications, Architecture Design, Installation Manual,
User Manual, Project Status Report (includes EVM) and
Project Closure Report.

IMPLEMENTATION
Based on QM, we have developed the process

infrastructure --policies, procedures, guidelines,
templates, tools, etc-- for the Electronics Department at
NSCL. The process infrastructure is hosted on a website.
The project management processes of QM have been
generalized, and are being used by non-software groups
within the Electronics Department. Currently there are
about 5 software development and 15 hardware
development projects using the QM processes. All new
projects in the department must adhere to the QM
processes.

We find that, for software projects, about 8-10% of
effort is spent on project management, and a similar
amount is spent on documentation. The Customers were
very satisfied (9 out of 9) with the ability to make
changes, the amount of resources they had to invest, and
project management. These results are preliminary; we

have not completed enough projects to give a definitive
result.

SHORTCOMINGS
QM is not the silver bullet, and has the following

drawbacks:
• Currently, measurement of QPMs and the

evaluation of PCTs, are subjective. This leaves
many decisions to project manager’s judgement.

• EVM requires projects to be base-lined, and may
not work well for very short iterations.

• It is a slightly heavy-weight model due to the
project management processes.

CONCLUSION
Even though QM was developed for our specific needs,

it is generic enough to be used by other organizations.
Most of the processes, roles, and policies have been
designed to be generic; only the guidelines and templates
are specific to our environment.

We are currently working on formulating objective
measurements of PCTs and QPMs. We are also looking
into modifying EVM to suit the Quark Model.

REFERENCES
[1] I. Sommerville, “Software Engineering”, 8th Edition,

Addison-Wesley, 2007.
[2] ANSI/PMI, “Project Management Book of

Knowledge 4th Edition”, 2008; http://www.pmi.org.
[3] U.S. Department of Energy, “Earned Value

Management”.
http://www.management.energy.gov/policy_guidance
/earned_value_management.htm

Figure 3: Quark Project Management Processes

FRCOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

210

Project management

