
synApps: EPICS APPLICATION SOFTWARE FOR SYNCHROTRON
BEAMLINES AND LABORATORIES*

T. M. Mooney#, ANL, Argonne, IL 60439, U.S.A.

Abstract
synApps[1] is a collection of EPICS [2] application

software originally intended to support the needs of
scientists performing experiments at synchrotron-
radiation beamlines. The collection contains general-
purpose software that extends or exploits capabilities of
EPICS base, and a large amount of instrument-specific
software that uses EPICS to control and provide a user
interface for off-the-shelf electronics.

This paper will provide an overview of synApps,
describe how the software is deployed at the Advanced
Photon Source, and highlight recent additions.

OVERVIEW
synApps is a collection of EPICS modules that

supplement the record types, device support, and other
software infrastructure included in EPICS Base. Because
it was written to support scientists conducting a wide
variety of experiments, most of the software in synApps
is general in purpose, and was engineered to serve many
needs at once, by abstracting from specific sets of
requirements general solutions for classes of problems.

But this focus on general solutions does not distinguish
synApps from other EPICS-application software. Most
EPICS software is general purpose, in part because
EPICS is a collaborative effort. synApps differs from
mainstream EPICS-application software in three ways: it
contains a small amount of synchrotron-specific software,
it provides infrastructure to support run-time
programming, and it provides infrastructure to support
data acquisition.

synApps consists of the following modules, grouped
according to the kinds of applications they support.

General-Purpose Modules
• autosave – Saves the values of EPICS process

variables, and restores them after a reboot.
• busy – Extends EPICS’ execution tracing to include

client software.
• calc – Provides variations of the EPICS calcout

record for systems of expressions (transform
record), string expressions (sCalcout record), and
arrays (aCalcout record).

• sscan – Supports scans (systematically set
conditions; acquire and store data).

• std – Supports scalers, sequences of operations, and
PID loops.

Hardware Specific Modules
• areaDetector – Supports multidimensional

detectors.
• camac – Supports CAMAC hardware.
• dac128V – Supports an IndustryPack digital-to-

analog converter.
• delayGen – Supports delay generators.
• dxp – Supports DXP digital-signal processing

spectroscopy systems.
• ebrick – Supports the EPICS Brick, a PC104-based

computer running Linux, as an EPICS IOC
(Input/Output Controller).

• ip – Supports various message-based (e.g., serial,
GPIB) devices.

• ip330 – Supports an IndustryPack analog-to-digital
converter.

• ipUnidig – Supports an IndustryPack digital I/O
module.

• love – Supports Love controllers.
• mca – Supports multichannel analyzers and

multichannel scalers.
• modbus – Supports Modbus devices.
• motor – Supports stepper and servo motors.
• quadEM – Supports a four-channel electrometer.
• softGlue – Provides user-programmed digital logic

and I/O.
• vac – Supports vacuum-related devices.
• vme – Supports VME hardware.

Synchrotron-Radiation Specific Modules
• optics – Supports X-ray monochromators, slits,

optical tables, and other synchrotron-radiation
equipment.

Other Software in synApps
• xxx – Provides a template for an EPICS IOC

directory using synApps.
• utils – Provides miscellaneous software related to

synApps, including support for migrating from one
version of synApps to another, support for a data-file
format used by synApps scan software, and support
for rapid EPICS-database programming.

Software Distributed with synApps
synApps makes use of the following EPICS modules

that are not part of synApps, but are distributed with it:
allenBradley, asyn, ipac, seq, stream, and vxStats.

 __

*The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the
Government.
#mooney@aps.anl.gov

THCOMA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

106

Data acquisition

RUN-TIME PROGRAMMING
Because many synApps users are scientists conducting

experiments, and because experimental work is typically
less well understood in advance than are other activities
supported by EPICS, synApps places a much greater
emphasis on support for programming at run time than is
typical of EPICS-application software. Most synApps
IOCs load records reserved for run-time programming;
and most synApps record types are supported by displays,
online documentation, and autosave-request files for this
purpose. Also, many synApps record types check and
report to the user the states of their link fields, so that run-
time link errors can be recognized promptly.

In this context, “programming” does not mean code
development or scripting, but rather the configuration and
linking together of EPICS records. A collection of linked
EPICS records – an EPICS database – can be viewed as a
program in a very high-level language. For example, an
input record linked through a calculation record to an
output record can implement a feedback loop.

An EPICS database configured at run time is not
distinguishable in any essential way from a similar
database configured at build time: it has the same speed
and efficiency, and it can drive or be driven in the same
ways. Thus, run-time-programmed databases can be
layered, sequenced, event driven, or scanned, and the
result for end users is an extraordinarily powerful and
versatile capability to diagnose and solve problems as
they arise during an experiment, and to modify solutions
to those problems as they become better understood.

The principal means by which run-time programming is
accomplished in EPICS is the redefinition of an EPICS
link. In early versions of EPICS, links could not be
changed at run time. The first programmable links were
implemented by Marty Kraimer for use by the synApps
scan and wait records (originally developed by Ned
Arnold), and they were initially viewed as support for
scans. But the wait record quickly came to be applied
more widely for its run-time programming capability, and
the result was powerful enough to motivate the
development (by Marty Kraimer, Bob Dalesio, Jeff Hill,
and others) of support for run-time redefinition of all
EPICS links.

The impact of run-time-programmable links on
synApps’ development was profound: most synApps
record types, databases, and displays came to be
developed with run-time programming as an objective,
and the automated saving and restoring of EPICS PV
values (autosave, originally developed by Bob Dalesio)
acquired new urgency and purpose.

Recently, the notion of run-time programming was
extended to run-time development of digital hardware, in
the softGlue module.

Rapid Prototyping
Soon after support for run-time programming became

pervasive in synApps, the capability was recognized also
as a rapid-prototyping tool – a way for EPICS-database
developers to test and combine database fragments

without rebooting. The principle defect in this
development approach was the lack of a convenient way
to save run-time programming in the standard form of an
EPICS database file.

A wxPython program, snapDb, was written to address
this problem. Using snapDb, a user or developer can
produce a loadable EPICS database from run-time-
programmed fragments simply by using MEDM’s Drag-
And-Drop capability to enter a PV name from each record
into a list. snapDb then reads all fields of the listed
records, and writes an EPICS database file. snapDb can
also write an MEDM display file for the database.

DATA ACQUISITION
Synchrotron-radiation users spend a lot of time

scanning – systematically varying conditions, acquiring
data under those conditions, and storing the data for later
analysis. The sscan module is dedicated almost entirely
to this purpose, comprising the sscan record, which
performs multidimensional scans; the recDynLink library,
which manages Channel-Access connections for the sscan
record; and the saveData task, which writes scan data to
disk.

Other synApps modules involved heavily in data
acquisition are the areaDetector, mca, dxp, and std
modules. These modules support specific hardware, such
as scalers, multichannel analyzers, and two-dimensional
detectors, and do so in a way that permits EPICS clients,
including the sscan record, to trigger data acquisition,
wait for acquisition to complete, and collect the resulting
data.

Completion Reporting
EPICS Base contains support for tracing the execution

of a linked set of records (i.e., a database), and for
signaling the completion of that execution to the client
that caused it to occur. Within an IOC, tracing is
performed by the EPICS putNotify facility. Execution
spanning more than one IOC can be traced by using the
Channel Access function ca_put_callback() to make the
completion of a record in one IOC contingent on the
completion of execution in another IOC.

synApps’ data-acquisition strategy relies heavily on
putNotify execution tracing, and synApps provides several
record types engineered to extend putNotify across IOCs,
in addition to serving their primary purposes:

• sscan – This record performs a one-dimensional
scan. Several sscan records can be linked to
perform multidimensional scans.

• sseq – This record is a variant of the EPICS seq
record, which performs a programmed sequence of
operations. The sseq record differs from seq in that
it can read and write strings as well as numbers, and
it can wait for completion between operations.

• swait – This record is an early prototype of the
EPICS calcout record, and is one of the first EPICS
records whose links could be modified at run time.
It differs from calcout in that it uses the recDynLink
library, and its output link waits for completion.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOMA02

Experiment Data Acquisition/ Analysis Software Data acquisition

107

• aCalcout – The array calcout record is a variant of
the EPICS calcout record, and differs from it by
supporting array fields and expressions in addition
to scalar fields and expressions. The aCalcout
record also can wait for completion of execution
triggered by its output link.

• sCalcout – This record is similar to the aCalcout
record, but it supports strings, instead of arrays.

• busy – This record functions as a proxy for the
execution performed by a Channel Access client.
EPICS putNotify cannot directly trace execution by a
client, so the busy record (which can be traced)
pretends to be executing until the client tells it to
stop.

Most of the listed record types have links that can use
the Channel Access function, ca_put_callback(), to
initiate execution, and that can wait for the resulting
callback, which indicates that the execution has
completed. The busy record is an exception: its purpose
is to be driven by a ca_put_callback(), and to look busy
until a client tells it to stop, whereupon its completion
yields a callback indicating that the client is done.

Automated testing
The infrastructure with which synApps supports data

acquisition by users is also useful to developers, for
diagnostic and testing purposes. The sscan record, for
example, has been used (with other run-time configured
software) to diagnose race conditions, by systematically
varying the time between the execution of application
code, and a simulated response from driven equipment.

The combination of the sscan record and the softGlue
module extends this diagnostic and testing capability to
digital hardware.

DEPLOYMENT AT APS
The deployment of synApps at the Advanced Photon

Source has evolved in response to an increasing number
of beamlines, an increasing emphasis on computer
security, and the similarly driven evolution of the EPICS
module structure. Originally, synApps modules (called
“Apps” in those days) were deployed alongside IOC
directories on a file server to which beamlines had
read/write access; there was not a clear distinction
between support modules and application modules.

As the number of beamlines increased, and the
separation between beamline subnets became more
complete and more rigidly enforced, synApps was split
into support modules and IOC directories. Support
modules (all modules except xxx) are now hosted, along
with EPICS Base, on a central file server, and both are
distributed via rsync to read-only partitions on secondary
servers dedicated to individual beamlines. The IOC
directories are now created on read-write partitions of
those secondary servers, and begin as copies of the
synApps xxx module, which collects support from all
other synApps modules and builds loadable executables
and database-definition files for use by one or more IOCs.

One effect of this evolution has been the concentration
of display files and autosave-request files in support
modules, rather than in application directories. In turn,
this concentration led to the development of an include-
file capability in autosave, so that module developers
could define the PVs needed to restore databases
implemented in those modules, and IOC directories could
simply include the request files for the databases they
needed to maintain through IOC reboots.

Another effect has been an increasing reliance on
MEDM’s ability to build displays using Composite
Objects – display files that can be included within other
display files and customized using macro substitution.

RECENT DEVELOPMENTS

areaDetector
The areaDetector module provides a general-purpose

interface for area (2-D) detectors in EPICS. It supports a
wide variety of detectors and cameras, ranging from high-
frame-rate CCD and CMOS cameras, pixel-array
detectors such as the Pilatus, and large-format detectors
like the MAR-345 online imaging plate.

Among recent improvements in areaDetector is the
evolution of support for plug-ins, which provide a
mechanism for device-independent real-time data
analysis, such as regions-of-interest and statistics.

softGlue
The softGlue module provides EPICS users and

developers with the capability of creating and modifying
simple digital electronic circuits, connecting those circuits
to external devices, and controlling or driving the circuits
– all by writing to EPICS process variables.

ACKNOWLEDGMENTS
synApps is the product of a collaboration including

more people than can practically be named here. Most of
the EPICS developers at the Advanced Photon Source –
in particular, those in the Beamline Controls and Data
Acquisition Group – and many at other EPICS sites, have
contributed code or ideas, tested on or ported to new
architectures, improved the build software, etc. Mark
Rivers is responsible for much of the recent work in
synApps, and maintains a large fraction of synApps,
including the areaDetector, camac, dac128V, dxp,
ip330, ipUnidig, mca, modbus, and quadEM modules.

REFERENCES
[1] http://www.aps.anl.gov/bcda/synApps.
[2] http://www.aps.anl.gov/epics.

THCOMA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

108

Data acquisition

