
#apazos@embl-hamburg.de

SCRIPTING TOOLS FOR BEAMLINE
COMISSIONING AND OPERATION

A. Pazos#, S. Fiedler, EMBL-Hamburg, Hamburg, Germany
P. Duval, DESY, Hamburg, Germany

Abstract
Scripting tool capabilities are a valuable help for

beamline commissioning and for advanced user operation.
They are the perfect complement to static Graphical User
Interfaces allowing one to create different applications in
a rapid way. A light middle-layer for scripting support has
been foreseen for the EMBL structural biology beamlines
at the PETRA III synchrotron in Hamburg, Germany, to
provide 'controlled' rather than 'direct' access to the
control system devices. This prevents conflicts with the
control system and allows control of the supported
operations. In order to account for the wish of different
scripting languages by the beamline scientists an
extension of the scripting capabilities of the TINE control
system has been implemented. To the existing shell
support, a Python extension (PyTine) has been added and
a Perl wrapping has been also prototyped (tine4perl). An
explanation of these implementations and the different
wrapping possibilities is also described in this paper.

INTRODUCTION
The EMBL-Hamburg outstation is commissioning three

beamlines at the new PETRAIII light source at DESY
(Hamburg). In addition, two beamlines at the DORIS
storage ring are available for testing and prototyping the
arriving instruments.

The control software is based on a client/server
architecture integrated with the TINE control system [1].
Each device exports a TINE server that allows its remote
operation. Flexibility has been a key feature since the
design phase. For this reason different kinds of
programming languages like C/C++, Python and
LabviewTM are supported.

The client side is mainly represented by Graphical User
Interfaces (GUI) that connect themselves to the existing
device servers. Two kinds of GUIs are available
depending of the application. On one side there is an
advanced control GUI that allows the operation and
tuning of the entire beamline. This is mainly used by the
beamline operators and experienced personnel. On the
other side there is a GUI for visiting scientists with
limited functionality with the main purpose of performing
the data collection.

Some procedures, not even supported by the advanced
GUI, need to be executed during the commissioning.
Moreover, advanced users have the requirement of
executing different strategies that are not foreseen at the
user GUI.

In both situations the availability of a flexible and rapid
way of executing this set of actions is very desirable. For
this reason a scripting layer has been introduced at the
software architecture allowing one to “glue” calls to the
device servers. For gluing and system integration a
scripting language can be 5-10 times faster than a system
language [2] and the strong typing makes the programs
easier to manage.

It is not desirable to the overall operation of a beamline
that a user, not familiar with the installed hardware, is
allowed to freely execute server functions. Of course,
there are control system security measures, but overlaying
the servers with a light scripting interface makes the
system safer. Thanks to this scripting layer, the naming
convention of the functions can be freely chosen.

SCRIPTING REQUIREMENTS
On the basis of our experience with beamline operation

and after evaluating the specifications given by the
beamline scientists, a list of requirements for the desired
scripting environment was compiled:
• Easy to learn (for the developers and for the users)
• Easy to maintain
• Flexible (possible to refactor)
• Dynamic (does not need variable declarations)
• Well defined syntax
• Well documented
• Possible to control the accessible functionality
• Separated from the device specific layer
• Command-line support
• Sequencer support
• Reliable
• Secure
• User proof
• Multi-platform
• Open-source

TINE FOR SCRIPTING
The TINE control system originally supported a set-up

of shell commands meant to build shell scripts both in
Linux and Windows. Examples for these are the ‘tget’ (to
receive data from a server) and the ‘tput’ (to send data to
a server) commands. These functions are implemented in
C and make use of the TINE C API. They receive as an
input the necessary information (address, property, data
type and data size) to make a call to a server.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL013

System Engineering Deployment and Commissioning

153

At first instance, they have been extensively used for
commissioning and currently are used for setting up
initialization scripts. For experienced users and
developers, they allow efficient operation. . However, for
users not familiar with the shell environment they might
appear cumbersome.

Considering the defined requirement list and adding
some extra valuable points (listed bellow), Python [3] was
selected as the main supported scripting language.
• It has object oriented possibilities.
• Is getting more popular inside many scientific

communities.
• It is also a powerful programming language.
• There are multiple open source libraries available.
• It is also possible to compile and to create

executables.
• It is extendable and embeddable.
• There exists graphical support (PyQT [4] and

others).
• There is already experience in our group.
• The GUI used at our MX beamline (MxCube [5]) is

based on Python.

PYTINE
Initially there was no API for accessing the TINE

control system from Python. First ideas where shown at
the TINE Workshop, 2007 [6] demonstrating the
possibility and the ease of performing such a task. With
this starting point an evaluation of the different
alternatives was performed.

Native implementation
A native implementation of the TINE control system in

Python was evaluated. This would have meant a long term
project with complex network implementations. It also
would imply a big effort for maintaining and keeping it up
to date. This possibility was beyond the scope of the
project, having a TINE C API and taking into account that
the most-widely used implementation of the Python
programming language is written in C.

Python Bindings
The idea was to wrap the TINE C library, implementing

Python bindings on top of this (see Fig. 1).

Figure 1 – PyTINE implementation overview

This concept had been successfully used for giving
support to other programming languages, such as
LabviewTM and MatLabTM. The use of the TINE Java
library was discarded because of better experience of the
developers with the C API. The desired outcome was a
Python library totally transparent to the C interfaces.

The possibility of using a translator library was also
tested. The most popular systems were installed and
evaluated: Boost.Python [7] and Swig (Simplified
Wrapper and Interface Generator) [8]. The Boost libraries
turn out to support more functionality for Python and to
be more extended than Swig, but in both cases the
translation was not a fully automatic process. For this
reason, a native binding inside the C code, without
dependencies on a third part library, was decided. This
was based on the direct use of the Python.h library and
generated with a standard gcc compiler.

All the TINE client functionality was wrapped and a set
of new functions was implemented in order to provide a
generic friendly interface. This collection constitutes the
PyTINE API and its main characteristics are:
• Callback capabilities.
• Support for the TINE data types.
• Data structures available.
• Tested in Linux and Windows.
• Plot functionality integrated, thanks to the use of the

PyPlot library [9].
• Integrated inside Labview applications using

LabPython [10].

Scripting Middle Layer
As mentioned in the previous section, the PyTINE

library is not meant to be invoked directly by the user
scripts. It is imported by a set of Python modules,
provided by the developers, which create the available
functions for implementing scripts. Each of these modules
have a specific functionality attached to one or more
device servers. They are implemented following an object
oriented approach.

In order to perform for example a non-standard data
collection, a user can easily implement a Python script.
This will call the supported methods of the dataCollection
class, which internally take care of the correct operation
(see Fig. 2).

import dataCollection

//set the exposure parameters
prefix = tst1
dir = /home/marccd/images
run = 1
distance = 320
startphi = 0
phirange = 1.0
exposure = 1.0
frames = 10

move distance to start synchronous
dataCollection.moveDistance(325)

start data collection
i = 1

THPL013 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

154

Deployment and Commissioning

while i <= frames:
 status = dataCollection.exposeFrame(PHI,
exposure, startphi, phirange, run, dir ,prefix)
 print “Exposing frame ”, i , “ result: “,
status
 i++

print “Data Collection Finished”

Figure 2 – Script to set parameters like rotation angle,
starting angle for the phi axis of a diffractometer, detector
to crystal distance and initialize a rotating crystal data
collection with Xrays recorded by a CCD area detector

TINE4PERL
After the implementation of PyTINE the possibility of

interfacing TINE with Perl [11] was also tested. The
target was to get and put synchronous data of the basic
data types. Making use of the flexibility and extensibility
of the control system it is possible to accommodate
different developer’s flavours regarding programming
languages.

Thanks to the experience acquired with the prior
implementations, this turned out to be a minor task.
Because only the basic functionality was needed and the
good support provided for Perl [12], the Swig translation
library was selected. To do this, a SWIG interface file
(with the extension .i) had to be written. In this file, the
ANSI C prototypes that have to be accessed from Perl are
listed. In addition, some SWIG directives had to be
included. In our case, some specific functions to treat
arrays and strings were implemented. Invoking the SWIG
command two files are produced: the tine4perl_wrap.c,
which contains the C wrapper functions and the
tine4perl.pm, which contains the supporting Perl code
needed to load and use the module. As last step, the
wrapped file has to be compiled and linked into a shared
library (see Fig. 3).

INCL = /usr/include/tine/
LIBS = /usr/lib

CPP = g++ -fPIC -shared
CC = gcc -g -fPIC -Wall -I${INCL} -c
CCL = cc -g
LM = -lm
LD = ld -G
SWIGPERL = swig -perl5
CCPERL = gcc -I${INCL} -c

tine4perl.so: tine4perl.o
 ${LD} tine4perl.o tine4perl_wrap.o
${LIBS}/libtinemt.so -o tine4perl.so

tine4perl.o: tine4perl.c
 ${SWIGPERL} tine4perl.i
 ${CCPERL} tine4perl.c tine4perl_wrap.c
`perl - MExtUtils::Embed -e ccopts`

Figure 3 – TINE4PERL ‘make’ commands. It uses a
standard gcc compiler and the generated objects to the
multithread tine library

CONCLUSION AND OUTLOOK
A scripting language is suited to perform different tasks

than a system programming language. We have seen in
our applications that if they are used together they can
create very powerful programming environments
fulfilling complementary requirements.

A scripting language should be as simple as possible. In
some occasions it is beneficial not to provide a direct
access to the system but to use a middle layer controlling
the access to the device servers.

It is important to evaluate very carefully the existing
wrapping solutions, including automatic converters, in
order to support a new scripting language. Depending on
the desired functionality it might be better to use one
method or the other. On the one hand, the use of an
automatic converter for complex implementations, that
possibly include pointers and data structures, it can prove
to be a tedious task, making it necessary to learn a special
syntax. On the other hand, an automatic converter can
create fast bindings for simpler wrappings.

In our environment, where all the software is integrated
in a control system, flexible and open systems allow us to
extend their functionality and to support new
programming languages.

This scripting concept and architecture developed to
control synchrotron beamlines could be extended and
applied to different instrumental environments and
integrated with different control systems.

REFERENCES
[1] P. Bartkiewicz and P. Duval, “TINE as an accelerator

control system at DESY”, Meas Sci Technol,
18:2379–2386, 2007, p. 2379-2386

[2] J. Ousterhout, “Scriptiong: Higher Level
Pogramming for the 21st Century”, IEEE Computer
magazine, March 1998

[3] Python Programming Language, www.python.org
[4] PyQt White Paper, www.riverbankcomputing.com
[5] J. Gabadinho et al., “MxCuBE: a synchrotron

beamline control environment customized for
macromolecular crystallography experiments”, J.
Synchrotron. Rad., 2010, 17, 700-707

[6] D. Franke, “TINE+Python Bindings”, (see
http://tine.desy.de TINE Workshop 2007).

[7] C++ Boost Libraries, http://www.boost.org/
[8] Simplified Wrapped and Interface Generator (SWIG),

http://www.swig.org/
[9] Matplotlib, http://matplotlib.sourceforge.net/
[10] Labpython, Open Source Python tools for

LabviewTM, http://labpython.sourceforge.net/
[11] Perl Programming Language, http://www.perl.org/
[12] D. Beazley et al., “Perl Extension Building with

SWIG”, O'Reilly Perl Conference 2.0, 1998, San
Jose, California

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL013

System Engineering Deployment and Commissioning

155

