
THE ANKA B-FIELD TEST FACILITY CONTROL SYSTEM, BASED ON A
SPEC MACRO PACKAGE ENHANCED SETUP*

Karlheinz Cerff, Thomas Spangenberg, Wofgang Mexner, Institut for Synchrotron Radiation, (ISS)-
ANKA, Karlsruhe Institut of Technology, (KIT)-Campus North, Germany.

Abstract
The ANKA B-field test facility provides users with a

flexible tool to investigate magnetic field distributions
of different setups of coils or permanent magnets,
optimal sensor types, geometrical alignments of probes
and the possibility to change the independent physical
stimuli to generate and alter magnetic field
distributions [1]. From the point of Software
development it is taken as an example of a straight-
forward device implementation with a recently
introduced type of macro based ‘building block
system’ for devices in SPEC, [2]. This macro package
provides the C-like SPEC with an object orientated
framework with a namespace and class concept to
represent the power supplies of different brands, probe
positioning devices and measurement amplifiers.

INTRODUCTION
The B-Field Test facility provides measurement data

of magnetic field distributions of coils or permanent
magnet structures, within the range of um spatial
resolution, over positioning ranges up to meters,
devices in use are,
• a stepper motor driven, encoder monitored linear

positioning probe, equipped with a variable
geometrical arrangement of Hall-sensors to measure
B-field induced voltage gradients.

• Two power supplies, consisting of a main and a
second, multiple power supply, driving individual
shaped I-current ramping functions for corrector
coils.

• A Digital Multi-Meter (DMM) of Keithley, type
‘k2700’ to read out, up to n Hall-probes.

The control software package should also generate a
raw data fit for a polynomial of variable degree i (i<
=9), for up to n Hall-probes. At last the control system
monitors the safe operation of the Test facility, for
example it shuts down the main power supply when a
superconducting coil under test is quenching.

IMPLEMENTATION
In the context of the ‘Macro package based Enhance-

mend of SPEC controlled Experimental Setup’[3], this
means that the device properties are stored as elements
of data structures (SPEC global associative arrays).
The task of the software development is, to
• set up an abstract model of the B-Test Facility

hardware devices.
• write the device drivers for B-Test Facility motor,

power supplies and digital multi meters.

• linking the resulting SPEC macro functions to the
Interface generated by enhanced macro package.

The introduction of a set of interfacing rules minimizes
the risk of damage to existing SPEC-structures,
furthermore it opens the possibility to port in this way
generated SPEC-‘classes’ to other experimental facili-
ties.
Table.1: B-Test facility, list of realized implementation
of functions, devices, SPEC ‘-instances’ and –‘classes’.

physical
function

device SPEC-
‘instance’

SPEC–‘class’
(macro)

motor controller,
one channel

OMS-Maxv ‘m0’ Motor.mac

main power sup-
ply, 1 channel.

FUG NTV-
1000

‘fugbig’ Fug.mac

power-supply
small, 8 channels

FUG NTV-
100

‘fug’ Fug.mac

Digital multi-me-
ter
Hall-probes

Keithley,
K2700/7703

‘k2770’
‘Hall n’

Anka-
Keithley.mac

 Setting up the B-Test Facility, the two power supplies
are defined as members of the ‘class’, represented by
FUG.mac. They are both instantiated as objects ‘fug’
and ‘fugbig’ in the declared global associative array
‘FUG’, writing a set of device dependent standard-
values to it. SPEC-associative Arrays offer as possible
arguments arbitrary strings or numbers instead of
integers [2]. In the ‘class’-macro keithley_anka.mac,
the Keithley DMM is instantiated as object “k2700”
and the connected Hall-probes as objects “Hall-1”-
“Hall-15. The minisetup class’ macro contains the
‘standardvalues’ declarations and a data fit object to fit
raw data to a polynomial up to the order of nine.

Benefit
• Two FUG devices, representing nine power supply

‘objects’ can be accessed by 11 (for the main power
supply) and 73 (for the corrector power supply)
standard-function calls obeying the naming rules
introduced by the macro package.

• Up to fifteen Hall-probes have to be addressed by
255 standard function calls for the Hall-probes plus
three functions for the K2770.

The advantages using the object oriented approach is
clearly visible, there is no need to write, a set of 84
nearly identical conventional SPEC-functions for
power supplies and additional 255 functions to handle
the output, in addition existing ANKA-beamline driver
modules for motors can be used.

THPL014 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

156

Data acquisition

Figure 1: Macro Package generated structures (blue), driver software to be written (green and cyan),
SPEC-built in functions (grey), interface function calls (white)

BUILDING THE B-TEST FACILITY

DEVICE MODELS
Loading and executing, the blnamespaces-macro,

which is the heart of enhanced setup, submits the
functionality for setting up the namespace and global
array structures:
beamline_define_state (“x”,”default”)
beamline_init_namespace (“x ..”)
Both function are processed only once, because all
devices are instantiated in one state “default” and
namespace “x”. In principle the concept allows
multiple state definitions “others” which could be used
for example to define different arrangements of Hall
sensors The functions below instantinate the device-
objects given in the first column:
beamline_setDRV(“fugbig . ”,”FUG”)
beamline_setDRV(“fug . ”,”FUG”)
beamline_setDRV(“k2700a . ”,”KEITHLEY”)
beamline_setDRV(“hall n . ”,”KEITHLEY”)
The power supplies are abstracted by:
status, ramping behaviour, address, type, set/get/
voltages, I-currents, I-current-rates. The device models
are stored as sets of object variables in the associative

arrays “FUG” and “KEITHLEY”, generated by the
macro package init functions, s. Fig.1:

devn . property = “value” structure:

FUG["fug"]["$active"] = 0
FUG["fug"]["$adress"] = "192.168.4.4:23"
FUG["fug"]["$fugtype"] = "FUG-NTV 100"
FUG["fug"]["$maxcurrent"] = 10
FUG["fug"]["*current1"] = 0
FUG["fug"]["currentrate 1-n"] = 0.2
FUG["fug"]["dcpower 1-n"] = 0
FUG["fug"]["readout 1-n"] = 1
The prefix in the second array elements marks the state
of properties: “private”, “read only”, “read/write” or
“command “.

B-TEST FACILITY DEVICE DRIVERS
The program code which has to be written are the

device driver macros for power supplies “fug” and
“fugbig” and the digital multi meter with connected
Hall- probes.
The functions can be grouped in :

dev–N hardware
calls
sockets

blnamespace
stmacs-function
mapping Macro

Macro Package for Enhanced Setup Device Drivers Data Structures

bl._States_n
bl_state _1= „ default “

namespace „x“

glob. array dev.N
FUG[][]

glob. array dev.1...
[state.device.prop]

blnamespaces-macro

init functions:
beamline_define_state ()
beamline_init_namesp
ace()
beamline_setDRV ()

setvalue functions:
beamline_setdefaultvalues ()
devicename_standardvalues()
device_sync ()
user functions:
blset_devname_property()
blread_devname_property ()
blcmd_devname_cmdname []
blstate_devname
blct
blget_devname_property()
blshow_devicename
blinit_devicename()
blreset_devicename

user-functions in external
applications

SPEC-Session

implements :

dev-1hardware calls,
sock_put /get

driver -macro for
device-N object

driver-macro for
device-1 object

is programmed de-
vice dependent

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL014

Experiment Data Acquisition/ Analysis Software Data acquisition

157

• internal functions, like socket functions to set/get
specific hardware register values, to reset or
initialize devices, to address sub device and
functions to process data strings received.

• Functions for data synchronisation with the pre-
defined standard values in associative arrays or with
the ongoing values of the hardware device of
interest,

• functions to set /get device parameters by calling
external measurement devices used at ANKA-beam
lines

• functions, which are ‘built in’ SPEC, here used for
the linear motor drive with encoders to position
Hall-probes.

FUNCTION-MAPPING
A set of ‘standard-’ or user functions’ for

communication is generated automatically by the
macro package. The bulky type of driver functions with
long argument lists is mapped to a set of user friendlier
functions. The functions have the general form:

def user_function (value, argument) ‘{
<return> driver function (“device name . property”)
}

The simplest user functions don’t have arguments, for
example a ‘blct‘-call, gives the outputs of all para-
meters of the assembly of power supplies, DMMs, and
Hall-probes of the B-Test facility:
A generic example for function mapping, will be the
‘setcurrentrate’ user function for 8-fold power supply
‘fug’, device No 3, with a I-current rate of 0.2A/sec.
The user function call is ,

• blset_fug_currentrate3(0.2)
mapping to the device driver function :
• FUG_setcurrentrate3(“fug”, 0.2, 3).

This calls the SPEC socket functions of the driver to
write an appropriate value to the hardware register sub
address 3 of the power supply “fug”, after command
reference given in [5]:
def FUG_setcurrentrate3(device,quiet,value,) '{
__FUG_setcurrentrate(device,quiet,value,2) }'

call of __internal driver function :
def __FUG_setcurrentrate(device,quiet,value,devnr) '{

#which type of power supply ?:
if (FUG[device]["$fugtype"]=="FUG-NTV 100") {

write external inputs for ps with devnr=2+1 to’
 value’:

value = NumberInput ("current rate", FUG [device]
[sprintf ("setcurrentrate%i",devnr+1)] ,0, 1, quiet,
value);

call subdevice 3, addressing, convention, s. com-
mand reference [5]

__FUG_sendcommand(device,sprintf ("%s>S%iR
%g\n",sprintf("#%i",int(devnr/2)),devnr-
2*int(devnr/2), value));

The __internal function uses the basic ‘built in’
 SPEC socket_put function:

def __FUG_sendcommand (device,command) '{
sock_put(FUG[“device”]["$address"],command);

}
}'

value gets the formatted readback from subdev. 3:
value = __FUG_splitanswer(__FUG_readback
(device));

__internal function calls basic sock_get function:

def __FUG_readback(device) '{ local tmp;
tmp=sock_get(FUG[“device”]["$adress"]);

 }'
updates appropriate element of global array FUG

with current read back value:

FUG[device][sprintf("setcurrentrate%i",devnr+1)]=_
_FUG_readcurrentrate (device, quiet ? 0 :1,devnr);
 }

CONCLUSION
The object oriented implementation, by use of

existing beam-line software modules make the
procedure straightforward since only the missing
drivers for power supplies, digital multi-meters and the
raw data evaluation algorithm, have to be introduced.
But synergy proceeds, the FUGs will be the power
supplies of future insertion devices [4] at ANKA, so
the Software modules written to control its devices can
easily be ported to the control system of the next
ANKA superconducting undulator.

REFERENCES
[1] CASPER- A magnetic measurement facility
for superconducting undulators,
E Mashkina et al 2008 J. Phys.: Conf. Ser. 97 012020
[2] www.certif.com, software SPEC
[3] Macro Package based Enhancement of SPEC
controlled Experimental Setups, T. Spangenberg, K.
Cerff, W. Mexner
Proceedings of PCaPAC2010, Canadian Light Source,
Saskatoon, Canada , October 2010
[4] A modular control system based on ACS for
present and future ANKA insertion devices
K. Cerff, W. Mexner, T. Spangenberg, M. Hagelstein,
Proceedings of PCaPAC2008, Ljubljana, Slovenia,
October 2008
[5] FUG, Probus, ADDAT30, command refer-
ence, V2,13

THPL014 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

158

Data acquisition

