
MACRO PACKAGE BASED ENHANCEMENT OF SPEC CONTROLLED
EXPERIMENTAL SETUPS

Thomas Spangenberg*), Karlheinz Cerff, Wolfgang Mexner
Institut for Synchrotron radiation, ISS, ANKA, KIT-Campus North, Karlsruhe, Germany

Abstract

Certified Scientific Software's program package spec [1]
for X-Ray diffraction and data acquisition provides
reliable instrument control to scientists at synchrotrons
and other facilities worldwide. It’s very flexible C-like
macro language provides a large number of degrees of
freedom for experiment control as advantage and as big
disadvantage at the same time. A large number of
programmers with their own ideas and naming
conventions are contributing to the growth of
functionality. At the same time the risk of collateral
damage by accidentally overriding already existing
functions and variables grows constantly. To solve this
dilemma a new object oriented like software development
concept for spec is proposed. A few naming rules plus a
macro package in combination with a single client-server-
application expand the manageability and options to
control experiments considerably. As main goal spec gets
an object-like handling and a standardized user interface
of newly introduced devices. A generic server-client based
interface allows a smooth integration of spec in more
complex control environments via TANGO [2].

INTRODUCTION
Most of the physical and logical devices provides the

opportunity to operate them in a simplified model as a set
of independent properties which are offered by a certain
remote interface. Therefore it becomes possible to
integrate them rapidly into its own measurement setup
either by direct driver support or by some macro
integration.

As an example, the software package SPEC with its
flexible macro language and various interfaces offers a
number of paths to implement additional hardware into an
experiment.

It will be shown that the risk of interfering solutions
can be avoided for the device integration by introducing a
few design rules in combination with a macro package.
Additionally the client server based export possibilities of
the integrated devices will be increased significantly.

MACRO PACKAGE AND DATA
STRUCTURING

The basic idea of that macro package is to organize and
handle devices object like although SPEC’s pure macro
based programming language definition doesn’t support
objects directly. But the provided data structures permit
with a few limitations an object like structuring of data
and a macro supported creation of specific functions to

manipulate them.
Starting from the abovementioned simplified device

model the representation of the device properties is stored
into SPEC’s associative arrays (see Fig. 1) which yields
three advantages.
• First, all objects of one class are stored in only one

array variable. It is evident, that a naming conflict
can be prevented by using a single identifier per
class.

• Second, due to SPEC’s data type definition any type
of data can be stored into this array.

• Third, the two dimensional index organized by
strings is well suited to store data differentiated into
‘objects’, their properties, and their methods.

The data organization of the macro package is basically
funded to associated arrays and is introducing a naming
convention to their indices. SPEC defines associative
arrays as a string indexed data object which stores any
type of information. The first dimension of the two
dimensional index is used for the device name. The name
is usually chosen as an acronym which describes the
device function in the experiment (e.g. vc1 for vacuum
controller 1, see fig. 1).

The second part of the index string is primary subjected
to the device property. Additionally the first character is
used to transport the minimal necessary information about
the represented property which is used for the
automatically generation of the user interface. The
implemented scheme is as follows:
• ‘$’ indicates internal variables. There are no user

functions provided.
• ‘*’ indicates read only properties or variables. Read

functions are provided.
• ‘!’ indicates a command. A command function will

be available.
• no special character indicates a read/write property.

Read and write functions are provided.
The formal initialization overhead due to the macro

package is very small. There are 2 functions for the whole
macro package and only 3 additional steps are needed to
implement a new device. There are:
• The formal declaration of the device instance by

name and device type, followed by
• The initialization and declaration of start-up values

and finished by
• Initializing the device or synchronizing the stored

information.
The macro package evaluates the stored data and

creates automatically the functions to manipulate them
obeying the fixed naming scheme. Thereby the whole
user functionality will be generated.

*) thomas.spangenberg@kit.edu

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL015

Experiment Data Acquisition/ Analysis Software Data acquisition

159

EXAMPLE IMPLEMENTATION
An example may demonstrate the situation. Assuming a
hypothetical vacuum pump controller (similar as shown in
fig. 1) device vc1 which may store its data into the
associative array VPC. The declaration of that structure is
done by global VPC while loading the macro package for
that type of controller.

private: address
r/o: current
r/w: voltage
command: on/off

Figure 1: an example vacuum pump controller and its
properties

As it is common to object orientated approaches a set of
‘class-functions’ needs to be provided by the controllers
macro package. The first argument of all functions is the
device name. Other arguments are regulated and straight
forward connected to the idea of the object like access
and the simplified device model approach.

The value initialization is done by
VPC_standardvalues(device, [arg1 [,arg2...]]). This
special function (see fig. 2) doesn’t have strong naming
rule because it will never be used automatically by the
package and depends of course from the device which is
to be implemented.

The task of the function is comparable to a constructor
of an object. It has to pre initialize all instance variables
and at the same time it is declaring the user interface
functionality due to the fixed naming scheme
abovementioned.

def VPC_standardvalues(device,address) '{
VPC[device]["$adress"] = address
VPC[device]["*current"] = 0
VPC[device]["voltage"] = 0
VPC[device]["!on"] = "VPC_poweron"
VPC[device]["!off"] = "VPC_poweroff" }'

Figure 2: example device value initialization

Furthermore current implementations of the macro

package expecting the functions VPC_init(device) which
drops all pre setted values into the device,
VPC_sync(device) to synchronize the object to the
device otherwise, and VPC_state(device) which is
printing the read device state onto the screen.

Declared commands are realized by any function which
has to handle 2 arguments. The first is the device and the
second is the optional user argument. An example may be
VPC_poweron(device,option), which name was stored
into the device property '!on'.

For reading and setting the property XYZ the functions
VPC_readXYZ(device,..) and VPC_setXYZ(device,..)
need to be defined.

The read and set functions have to provide some other
arguments which will be discussed following.

FUNCTION ARGUMENTS
The macro package requires from all ‘class-functions’ a
strict organization of all arguments concerning their order
and the meaning. The first argument is always the device
name.
Reading and setting functions are already differentiated
by the second argument which is for reading functions an
integer indicating the verbosity of it. The complete
declaration of the example read function is as follows
VPC_readXYZ(device,verbose).
The argument verbose regulates the verbosity which can
be switched on or off.
Setting functions using as a second argument an integer
which lets them operate quiet. In that case the third
argument represents the value to be set. The declaration is
therefore
VPC_setXYZ(device, quiet, value)
It is quiet clear that these ‘driver class functions’ needs to
be programmed with respect to the device and are
therefore similar to other approaches in relation to the
necessary programming effort. The goal are the generated
user interface and the export capabilities.

USER INTERFACE
Just offering to the user device view orientated

functions doesn’t satisfy the users view to an experiment,
which is usually more orientated to the job that needs to
done than to a certain device.

The macro package evaluates automatically the array
stored information (the index names and ‘$*!’) and builds
the whole set of corresponding functions and macros
which are representing the user interface for any device.
Even different user custom is satisfied by creating a
function based access and a macro based access as well at
the same time.

The created set for the example is shown in table 1:

Table 1: corresponding set of device functions and
generated user functions
device function user function / macro
VCP_state(“vc1”) blstate_vc1

blstate vc1
VCP_readXYZ(“vc1”,...) blread_vc1_XYZ(...)

blread vc1.XYZ
VCP_setXYZ(“vc1”,...) blset_vc1_XYZ(...)

blset vc1.XYZ
VCP_poweron(“vc1”) blcmd_vc1_poweron

blcmd vc1.poweron

THPL015 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

160

Data acquisition

It is obviously that the hardware specific part VCP is
eliminated from the user functions or macro calls.
Therefore any device with similar options maybe
exchanged without big incidence for the user.
The argument structure may appear rather complicated
but the macro package derived functions offering a
verbose interface to the user as well as a quiet device
interface for further macro programming at the same time.
Furthermore increases the clear and straight forward
command structure for any implemented device the user
acceptance and comprehension.
In case of reading a certain property the user may type
blread_vc1_XYZ(1) or blread vc1.XYZ to get a print
out of the current value. Otherwise any macro may use
blread_vc1_XYZ([0]) to obtain the value of the property
returned silently. The 0 is optionally because a not set
argument is implicitly set as 0.

On the other hand blset_vc1_XYZ(1,3) sets the value 3
silently to the device property and the use of the
argumentless version blset_vc1_XYZ() indicates the
request for a user dialog. The macro versions of the same
functions are blset vc1.XYZ 3 and blset vc1.XYZ
respectively.

DEVICE EXPORT
SPEC supports among other things the export of variables
and arrays and furthermore the remote execution of code
by a socket connection. This server functionality is well
developed but isn’t SPEC’s main goal. Some care is
advisable concerning the bandwidth of a single socket
connection and therefore the strategy for data exchange
influences the benefit.
The internal structure of the devices organized by the
macro package, as stated before, is concentrated in two
arrays which stores the basic set of information about a
device. The name and the name of the device class array
can be obtained and therefore the whole information set
maybe derived in a second step. Observing and exporting
these two arrays into a client application offers the option
to derive the complete state information about all macro
package managed devices if additionally the device class
arrays are obtained as well.
This approach minimizes the total number of variables to
be observed by the client and the run-time influence of
the steady client-server connection. Only 2 + N variables
needs to be tracked.
The realized client itself is designed as a TANGO server.
The first one offers a generic access to all macro package
devices too.
Due to the strict data organization the TANGO-server can
offer a generic and complete interface to access any
property for reading and writing (if applicable). The
generic functions are string based and schematically (the
original TANGO calls are a bit less instructive) defined as
follows:
• string SPECgetdevices();
• string SPECgetproperties(string device);

• string SPECblread(string device, string property);
• void SPECblset(string device, string property , string

value);
• void SPECblcmd(string device, string command);
All reading interface functions are operating with a

buffered and automatically updated data base. Settings
and commands are scheduled into SPEC’s command
queue

CONCLUSIONS
The introduced macro package in combination with a few
naming rules offers a straight forward approach to an
object like access for device implementations with
SPEC’s macro language. Unwanted variable cross talking
is maximally avoided and a systematic macro generated
user interface can be provided at the same time.

The whole functionality can be exported into a socket
client which offers itself a TANGO server for the SPEC
macro package managed devices and permits a remote
control of them by other programs

REFERENCES
[1] http://www.certif.com
[2] http://www.tango-controls.org

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL015

Experiment Data Acquisition/ Analysis Software Data acquisition

161

