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Abstract

Big physics control experiments require enormous com-
putational power to solve large problems with demanding
real-time constraints. Sensors are acquired in real-time to
feed mathematical routines, which then generate control
outputs to real-world processes. For tokamak control, a
non-linear PDE needs to be solved in real-time with a cy-
cle time of less than 1 ms.

We report on an alternative approach based on LabVIEW
that solves the critical plasma shape and position control
problems in tokamaks. Input signals from magnetic probes
and flux loops are the constraints for a non-linear Grad-
Shafranov PDE solver to calculate the magnetic equilib-
rium. An architecture based on off-the-shelf multi-core
hardware and graphical software is described with an em-
phasis on seamless deployment from development system
to real-time target. A number of mathematical challenges
were addressed and several generally applicable numerical
and mathematical strategies were developed to achieve the
timing goals. Several benchmarks illustrate what can be
achieved with such an approach.

INTRODUCTION

The magnetic equilibrium for a tokamak is described by
the Grad-Shafranov equation :
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whereψ is the poloidal flux function,j is the current den-
sity, R is the radial component andZ is the axial compo-
nent ( see figure 1 ). This problem is commonly solved by
a cyclic reduction algorithm [1, 2, 3]. A magnetic equi-
librium for discharges with plasma current is reconstructed
on a 33 x 65 grid using 40 magnetic probes and 18 flux
loop difference signals. The right hand side current den-
sity term is calculated by a weighted least squares fit to the
measurements which yields coefficients for the basis cur-
rent density profiles [2, 3, 4]. Three basis current density
profiles were chosen in the first round of development and
found to adequately fit the experimental magnetic probe
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and flux loop measurements [5]. The currents from the
poloidal field coils are also needed to compute the value
of ψ on the spatial grid.

Figure 1: The cross section of the ASDEX Upgrade toka-
mak showing the flux surfaces of the magnetic equilibrium
(red dotted lines) and plasma separatrix (red solid line).

REAL TIME GRAD-SHAFRANOV
SOLVER

We report on a new spectral-based algorithm to solve the
Grad-Shafranov equation in an unbounded domain. The
new algorithm adapts a method commonly used to solve
the Poisson equation in cylindrical coordinates. The use
of discrete sine transforms (DST) along the Z-axis and a

THPL024 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

180

Data analysis



tridiagonal solver [6, 7] is an alternative to the cyclic re-
duction algorithm to solve the Grad-Shafranov equation for
poloidal flux,ψ.

Spectral Method

A uniform mesh with constant spacingdR anddZ in the
R and Z directions is assumed. The grid points are labeled
from 0 toNZ−1 and 0 toNR−1, whereNZ is the number
of grid points in the Z direction, andNR is the number of
points in the R direction. The five point difference equation
with indexi in the R direction and indexj in the Z direction
can be written as :

ψi+1,j − 2ψi,j + ψi−1,j

dR2
− 1

Ri

ψi+1,j − ψi−1,j

2dR

+
ψi,j+1 − 2ψi,j + ψi,j−1

dZ2
= −µoRiji,j (2)

Introducing the discrete sine transform ofψ andj :
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j=1
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πjk
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)
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leads to the tridiagonal matrix equations :

βiφi+1,k − αkφi,k + γiφi−1,k = −µ0RidR
2Ji,k (5)

whereαk = 2 + 4S2sin2

(
πk

2(NZ − 1)

)
, βi = 1 −

dR/(2Ri) , γi = 1 + dR/(2Ri) andS = dR/dZ.

Tridiagonal Solver

The tridiagonal matrix equation is solved with a tridi-
agonal solver using an LU decomposition algorithm. The
LU decomposition generates two bidiagonal matrices sub-
sequently used in the iterative procedure to solve the tridi-
agonal equations. By using LU decomposition, operations
are reduced by a factor of 2 compared to the direct solver
algorithm [8].

Unbounded Domain

The solver for the Grad-Shafranov equation in an un-
bounded domain is composed of two fast solver steps [1].
The new algorithm reduces the computing time dramati-
cally by utilizing a spectral method at each step.

The first step of the solver uses zero as the condition for
all grid boundaries with a right hand side current distribu-
tion on the flux surfaces from the previous iteration given
by the weighted least squares fit to the magnetic probe and
flux loop measurements. In this step, it is only necessary
to computeψ at points neighboring the grid boundary and

a reduced inverse DST can be performed to calculate these
values. The columns ofψ inside the boundary edge are :

ψi,k =
2

NZ − 1

NZ−2∑

j=1

φi,jsin

(
πjk
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)
(6)

wherei = 1 andNR − 2, and the rows inside the bound-
ary edge can be calculated in a similar fashion withk = 1
andNZ − 2. All these four edges can be computed using
matrix-vector multiplication. This avoids the unnecessary
computations performed by a traditional inverse DST op-
eration applied to the entire grid. The gradients inψ nor-
mal to the grid boundary,(∂ψ/∂n)boundary, are the inputs
required for the next solver step. These are the shielding
currents that are necessary to force the zero boundary con-
dition of the first solver step. They are used to calculate the
Green’s functions forψ generated by a current hoop of ra-
dius,a, carrying current,I, for each grid point with radial
coordinate,R, and a vertical distance,Z, on the boundary
[1, 9, 10] :

ψ = µoI
√
(a+R)2 + Z2)((1− k2/2)K(k2)− E(k2))

(7)
wherek2 = 4aR/((a+R)2+Z2)),K(k2) is the complete
elliptic integral of the first kind andE(k2) is the complete
elliptic integral of the second kind [11, 12]. The actual
calculation of the resultingψ on the boundary is performed
as a matrix multiplication with pre-calculated coefficients
times the vector of shielding currents.

The second step of the solver is carried out with bound-
ary conditions from the first solver step but without current
source terms on the right hand side of the Grad-Shafranov
equation. Because only the first and last elements are
nonzero, it is possible to use an optimized DST to reduce
the computation effort. The faster DST is carried out by the
BLAS functiondger producing :
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)
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)
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(8)

The DST of the boundary conditions at the inner and
outer radial positions are added to the first and last
columns. The tridiagonal solver is applied to this result
and is added to the result from the first solver step. The
solution of the Grad-Shafranov equation is then calculated
by an inverse DST.

Under equivalent boundary conditions, an implemen-
tation based on the cyclic reduction algorithm computes
all elements on the grid in both solver steps. The Grad-
Shafranov solver algorithm described here achieves a sig-
nificant performance improvement in comparison to cyclic
reduction by employing two optimized DST implementa-
tions. The first implementation exploits the ability to avoid
unnecessary calculations. The second implementation ex-
ploits the fact that the right hand side term is zero except at
the boundary to greatly reduce the number of operations.
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Theψ generated by the external poloidal field coils and
passive stabilizing loop on the grid is also realized as a
matrix-vector multiplication using factors calculated with
Equation 7. The poloidal field coils and passive stabiliz-
ing loop are simulated as a finite number of filaments, with
each filament carrying an applicable number of turns. Vac-
uum field shots with current pulses successively in each of
the poloidal field coils are carried out to ensure that the best
possible estimates of the magnetic probe and flux loop po-
sitions and calibration factors of the integrators are usedto
reconstruct the tokamak magnetic equilibrium with plasma
current [5].

BENCHMARKS

A Dell T5500 with two PCI-e x16 slots wired as x8 (half
length), two PCI-e x16 Gen 2 graphics slots up to 150 watts
each, a PCI-X 64bit/100MHz slot with support for 3.3V or
universal cards (half length) and a PCI 32bit/33MHz 5V
slot (half length in desktop orientation) has been delivered
with LabVIEW RT 2009 installed. A dual port Gigabit Eth-
ernet card, a x4 PCIe VMIC 5565 PIORC reflective mem-
ory card and a NI PCIe 8362 interface card for connection
of 2 PXI 1045 chassis for data acquisition of up to 256
channels were installed. Floating point benchmarks indi-
cate a factor of up to 2.7 increase in performance in com-
parison to the current dual quad-core 3 GHz Xeon 5365
computer currently used for data acquisition and real-time
calculations of magnetic equilibrium using only function
parameterization [13]. The reflective memory card trans-
mits the 33x65 poloidal flux matrix value to the control
system with less than 1 ms delay. A third party PCI card
delivers 64 bit time stamps using a 100 MHz clock and gen-
erates the 10 MHz TTL pulses for clock synchronization of
the data acquisition boards in a number of data acquisition
systems.

The following cycle time benchmarks were achieved for
the real time Grad-Shafranov solver (GS) :

Table 1: Benchmarks for a single iteration of the real-time
Grad-Shafranov solver (GS) using 8 CPU cores and Lab-
VIEW RT 2009.

Platform GS
(ms)

Xeon X5365 @ 3.0 GHz 1.13
Xeon X5677 @ 3.46 GHz 0.63

The achieved cycle time for the Grad-Shafranov solver is
therefore satisfactory for the real-time processing require-
ments of neoclassical tearing mode stabilization experi-
ments where the cycle time of the discharge control system
is 1.3 ms [14]. It should be noted that these benchmarks are
for a single cycle iteration for the PDE solution. A detailed
comparison of real-time magnetic equilibrium reconstruc-
tion with well converged solutions from offline calculations
show that the small differences that are found for relatively

steady state conditions are not relevant for practical dis-
charge control [2].

CONCLUSION

A real-time Grad-Shafranov solver based on a discrete
sine transformation of the difference equation rather than
cyclic reduction has been realized. The resulting tridiago-
nal equations are solved with a specially developed subrou-
tine based on LU factorization. This tridiagonal solver re-
duces the number of operations with respect to the iterative
direct solver by pre-calculating the reciprocal of the diag-
onal elements. A reduced inverse DST is required in the
first solver step as only the relevant terms for those neigh-
bors of the grid boundary need be calculated. A simplified
DST can used for the second solver step where only the first
and last elements are non-zero. In this way the full inverse
DST of the first solver step is omitted and the DST of the
second solver step without current source terms can be cal-
culated with a smaller number of operations. The real-time
Grad-Shafranov solver cycle time of 0.63 ms on the de-
livered Dell T5500 platform satisfies the ASDEX Upgrade
real-time processing requirements.
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