
TANGO COLLABORATION NEWS
J. Meyer (ESRF) on behalf of the Tango community

ALBA, DESY, ELETTRA, ESRF, SOLEIL

Abstract
During the last years, the Tango collaboration was and is
still growing. More and more users are requesting new
features and developing new tools for Tango. Decisions
whether the requested features will be implemented and
whether new tools will be part of the Tango distribution
need to be made. The organizational aspects of the
collaboration need to be clarified as well as the decision
making process for new developments.

This paper will explain the collaboration, its
organization and the decision making process as well as
the latest facts and features around Tango.

Some ongoing developments are the new code
generation tool to allow inheritance in the Tango class
structure, the new event system for high bandwidth event
distribution and the Tango packaging to allow installation
with a few clicks.

WHAT IS TANGO?
Tango [1] is a control system tool kit developed by a

community of institutes. It is object oriented with the
notion of devices (objects) for each piece of hardware or
software to be controlled. Tango classes are merged
within operating system processes called Device Servers.
Three types of communication between clients and
servers are supported (synchronous, asynchronous and
event driven).

But Tango is not only the software bus which handles
the communication between device servers and clients.
The Tango tool chain offers software from the hardware
interface to the graphical user interface for several
programming languages.

Tango utilities are available, with the basic installation,
for code generation, device configuration and testing and
for administration and survey of a whole Tango control
system.

An archiving and a configuration snapshot system
usable with Oracle or MySQL are also available.

Table 1 : Available Tango Modules

Module Description

Core Libraries Client/Server communication libraries
for C++, Python and Java

Device Classes About 300 hardware interface classes
are available to download [1]

GUI Frameworks Available for C++ and Python using
QT, for Java using Swing and a web
interface written in PHP

Client Bindings LabView, Matlab and IgorPro

Tools Pogo – Code generator for device

classes in C++, Python and Java
Jive – Configuration and testing tool
Astor – Administration and survey of
the Control system

Archiving Archiving and snapshot system with
GUIs and web interface. Usable with
Oracle and MySQL

Alarm System Event driven alarm service

Sardana Framework for experiment control :
Interface standardization, configuration,
sequencing, command line interface

COLLABORATION HISTORY
Tango development started in 1999 at the ESRF.

SOLEIL joined as the first partner in 2002, ELETTRA
and ALBA joined in 2004 and the DESY (beamline
controls) in 2008.

For every new member a new memorandum of
understanding was signed by all collaboration partners.

We meet twice a year to discuss all ongoing projects. In
case of lack of consensus, we tried to find a solution, all
collaboration partners could agree upon.

A coordinator was named in each institute for all
organisational, but also technical requests concerning
Tango.

A mailing list is available for all questions and
propositions to the whole Tango community.

A GROWING COMMUNITY
Since last year we have two new institutes requesting to

join the collaboration: MAX-lab in Sweden, FRM-II in
Germany. Tango is also used by other laboratories, for
example LMJ (beam diagnostics) in France. Industrial
companies are evaluating Tango, due to outsourcing
requests from new projects.

The number of software development projects around
Tango is increasing. To package the system and to keep
the source repositories clean, we have to decide which
projects will be part of the Tango distribution and which
ones will be add-ons.

With the growing community, the increasing number of
users and the foreseeable number of new developments
around Tango, we have to find a new organisational form,
to be sure, to take decisions on development priorities and
strategies within a reasonable delay.

THE NEW ORGANIZATION
Taking into account the increasing number of users, we

will reduce the frequency of Tango meetings to reduce
organizational effort and cost. Specialised meetings on
particular development projects are encouraged.

WECOAA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

16

Status Reports

To allow a fast decision making process we are
changing the collaboration management structure. The
new structure has three levels:

1. The executive committee:
The executive committee takes the strategic decisions

about developments in the Tango collaboration. There is
one member from each institute who has signed the
memorandum of understanding. This representative
should have enough power to decide on allocating
resources to develop software for Tango.

The committee will meet, at least, just after the Tango
collaboration meetings.

2. The collaboration coordinator:
The collaboration coordinator is the central point of the

organizational structure and liaises between the project
leads and the executive committee. His responsibility is:

• To organize and coordinate the executive
committee meetings, to produce a report of the
committee meeting and to give feedback to the
Tango community.

• To maintain a global project plan, in collaboration
with the project leads, including requirements,
schedule and resource requirements.

3. The project leaders
Besides the Tango core libraries, several packages are

considered to be part of the Tango controls system. A list
of these packages is maintained up-to-date by the
collaboration coordinator and any change to this list is
decided by the executive committee. Each package which
is part of the Tango core has to have a project leader.

For the Tango community, the project leader is the
contact person for all questions and remarks concerning
that particular project. He is in charge of following the
project schedule and ensuring the requirements are
satisfied. In case of problems impacting on other Tango
project(s), the project leader refers questions to the
collaboration coordinator and eventually to the executive
committee.

We distinguish two different collaboration membership
types:

• Committer: must contribute resources to the
collaboration. He is responsible for one or more
Tango core packages.

• Contributor: can propose code modifications to
the committers for the Tango core packages and
submits Tango device classes to the public device
classes repository.

How to accept a new collaboration partner?
To be an official member of the Tango collaboration, a

new institute needs to sign the memorandum of
understanding. New members are to be accepted with a
unanimous decision by the executive committee.

How to get an official Tango decision?
All requests for decision should be sent to the

collaboration coordinator. They will be presented to the
executive committee during the next committee meeting.

Decisions are made by voting. The vote of each
executive committee member is weighted according to its
status as contributor or committer (cf. above). Each
committee member has at least a weight of one. An extra
vote is acquired if the committee member represents an
institute which is also a committer.

ON-GOING PROJECTS
The Packaging

To allow an easy way to install and run Tango we
prepare binary packages on top of the source code
distribution.

A binary package is available for Windows, since a
long time, from the Tango web site [1]. Now a first
version of binary packages is available for Debian and
Ubuntu Linux users. From Launchpad the different
packages can be installed as needed [2]. Investigations are
ongoing how to support binary packages for other Linux
distributions.

The Tango Box
The Tango box is a virtual Linux computer which runs

in the VMware Player [3] virtualisation software. On this
virtual machine runs a Tango system and most of the
Tango tools are installed and ready to be used. It offers an
overview of the Tango software on a running system
without installing Tango on a local machine. The software
on the Tango box is updated once a year.

GUI Developments
A lot of effort is spent to add more features and new

functionality to the available graphical toolkits.
The Python toolkit Tau supports the whole spectrum of

viewers now. With the C++ toolkit QTango, synoptic
displays can be created from CAD drawings. On the Java
side, an on-going development will open the toolkit for
different data sources. This should allow the usage of
widgets with non Tango data sources.

Pogo the Code Generator
All the Tango classes follow the same skeleton.

Therefore, a code generator (Pogo) has been written to
generate these skeletons. This tool was available at the
very beginning of Tango. Pogo was implemented using
hand written parsing techniques. The decision was taken
to re-write the code generator.

The new release of Pogo is based on modern techniques
using Xtext [4] to create a Tango DSL (Domain Specific
Language). This DSL is then used to describe the new
Tango class. Using Xpand [5] and a set of templates, the
Tango class skeleton is generated. Xtext and Xpand are
part of the Eclipse modeling project [6].

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA01

Facility Status Reports

17

With this new way of generating code, it is now
possible to implement inheritance of Tango device classes
properly. Only the inheritance of abstract interface classes
was allowed before.

Figure 1 : Code generation with Pogo

The new code generator is available for generating C++
classes. The templates for Python and Java still need to be
written.

THE NEAR FUTURE
A Faster Event System

The Tango event system is based on the CORBA [7]
notification service, the implementation used is
omniNotify [8]. Today’s event rates are sufficient but
cannot be improved due to the implementation of
omniNotify (dead project). The detailed problems have
been already described at ICALEPCS 2009 [9].

Performance measurements for event distribution have
been carried out using the Data Distribution Service
(DDS) [10] implementation OpenSplice [11] and the
publisher/subscriber pattern of the ØMQ [12] Socket API.

The measured performance values are in received
events per second between two machines (P4, 2.5GHz,
Ubuntu 9.04 – Core 2 Duo, 2.6GHz, Ubuntu 9.04) on a
100 Mbit network.

Table 2 : Event System Performance Tests

Sub 1 int (32bits) 1024 int
 Tango DDS ØMQ Tango DDS ØMQ

1 770 12500 45000 650 1850 2400
5 400 7900 14000 200 1800 500

10 220 6500 7300 100 1700 230

DDS showed the best performance, for a growing
number of subscribers, due to its multicasting protocol.
But it has a set of drawbacks for programming and
configuration. The ØMQ performance was measured only
with unicast transmission because the multicasting
showed reliability problems.

Table 3 : Event Systems Advantages and Drawbacks

 DDS ØMQ

+

CORBA ORB/DDS
cohabitation,
Performance,
QoS,
Multicasting

No extra processes,
Single cast performance,
Can switch from uni- to
multicast transmission

-

Three processes + shared
memory per host,
SIGKILL forbidden,
No core dump,
No dynamic data
partitioning possible

Multicasting not yet
100% reliable,
Young product,
More integration code to
write

The Tango philosophy is to keep it simple. ØMQ seems

to be more adapted for us, even if the programming effort
is higher and we have to collaborate with the
implementers to make multicasting reliable. Due to the
complexity of a multicasting set-up we would like to keep
unicasting as the default transmission for the event
system. But, multicasting should be available when
needed.

Library for Image Acquisition (LIMA)
LIMA is a project for the unified control of two

dimensional detectors. The aim is to clearly separate
hardware specific code from the common software
configuration and common features, like setting standard
acquisition parameters (exposure time, external trigger,
etc), file saving and image processing.

Requirements and specifications are actually collected
from the interested institutes.

On top of the functionality of this library, a common
Tango interface for 2D detectors should be defined.

REFERENCES
[1] http://www.tango-controls.org
[2] https://launchpad.net/~abogani/+archive/tango
[3] http://www.vmware.com/products/player
[4] http://www.eclipse.org/Xtext
[5] http://wiki.eclipse.org/Xpand
[6] http://www.eclipse.org/modeling
[7] http://www.corba.org
[8] http://omninotify.sourceforge.net
[9] E.Taurel, “Tango Kernel Status and Evolution”,

ICALEPCS’09, Kobe, Japan, 2009, THA001, p. 630
(2009); http://www.JACoW.org.

[10]http://www.omg.org/tlogy/documents/dds_spec_catalog.htm
[11] http://www.opensplice.org
[12] http://www.zeromq.org

WECOAA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

18

Status Reports

