
THE TINE CONTROL SYSTEM PROTOCOL: HOW TO ACHIEVE HIGH
SCALABILITY AND PERFORMANCE

P. Duval and S. Herb, DESY/Hamburg

Abstract

Over the years the TINE control system [1] has
implemented numerous strategies for achieving high
efficiency data transport within a distributed control
system. This was essential for controlling a large
machine such as HERA [2]. Our recent experience with
controls for the PETRA3 and FLASH accelerator
complexes at DESY has revealed new scalability issues.
The principal problem has been in limiting the
communications load on the front end servers and
network in the presence of increasing numbers of client
applications, many of which are written by 'part-time'
developers who prefer simple API calls, or use
development platforms which support only such calls. A
single such application, polling hundreds of devices, may
generate ~1000 calls per second to a single server. This
load on the server can be reduced if, for example, the
intermediate software layers can consolidate such calls
into array transfers. TINE now offers various 'second-
order' protocol features which go a long way toward not
just allowing but 'enforcing' efficient data transfer. We
shall describe some of these features in this article.

INTRODUCTION
In this report we concentrate on how the control system

protocol can be a limiting factor in scalability regarding
large distributed systems. To this end it is necessary to
review some popular communication strategies along
with application programmer interface (API) paradigms.

DISTRIBUTED DATA FLOW
0th Order: Transaction-based Client-Server

The earliest versions of most popular control system
protocols made exclusive use of transaction based client-
server polling. This data-flow pattern has the inherent
advantage of a ‘keep it simple’ strategy, but can quickly
run into scalability issues. These often manifest
themselves as server-load problems rather than network-
load problems, although both issues are important.

We take the average load (per second) on a server due
to polling clients to be roughly given by

TDTcS ULNNL ×××~ (1)

where Ls is the additional load on the server process due
to processing client transactions, NC is the number of
clients, NT is the average number of transactions per
client, LD is the average dispatch load of a transaction
request at the server, and UT is the average client polling
rate. Equation (1) is of course schematic. The loads LS

and LD will be taken to refer to the number of CPU cycles
devoted to the client-side transactions.

Note that ‘throwing money and threads’ at the problem
does not reduce the load as defined above. Faster, multi-
core computers are of course able to do more in a given
time interval. Using a thread for each transaction can also
reduce the impact of sluggish servers on the client side.
But in the end, the total number of CPU cycles involved
will be the same (if not more, due to extra thread
synchronization and context switching).

Similarly, the average load on a server’s network port is

TTTcN UPNNL ×××~ (2)

where LN is the network load (bytes per second), NC, NT
and UT are as before, and PT is the average transaction
payload. This does not depend on the number of threads
used or the CPU power of the server.

A real reduction in load (server or network) involves
reducing either NC and NT or both in the above equations.
This can either be accomplished artificially (for instance
by imposing restrictions on the number of and location of
clients allowed to run and the update rates they are
allowed to use) or moving to other data flow models.

1st Order: Contract-based Publish-Subscribe
As most control system data is used primarily in

display at the client side, moving to an asynchronous
publish-subscribe model can work wonders reducing the
load on a server. Doing so eschews the ‘keep it simple’
approach, as connection and contract management are
needed. A transaction request now results in a contract
managed by the server, along with a table of attached
clients. Nonetheless, the average load on a server due to
client requests essentially becomes

TDTS ULNL ××~ (3)

That is, the number of clients no longer plays a role. A
transaction request is cached and made once on behalf of
all NC clients.

The outgoing network load (2) essentially remains the
same, as the transaction results need to be passed to all
interested parties. The incoming contribution to network
load is for all practical purposes decimated, as transaction
requests are made far less often. In order to further
reduce the network load, one can adopt a ‘send-on-
change’ policy, or reduce the number of clients by
delivering data via multicast (especially effective for
those transactions involving large payloads). The TINE
control system protocol supports both of these features.

Asynchronous, publish-subscribe based protocols have
a much larger domain of applicability, which however is
still finite for several reasons. First, the API paradigm

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA02

System Engineering Building reliable systems

19

still permits plaguing a server with an extra large number
of transactions, NT. Second, if application programmers
have complete freedom in choosing their platforms and
programming styles, client applications may still engage
in synchronous polling, effectively reintroducing the NC
factor, and (depending on contract management) possibly
imposing an additional asynchronous/synchronous
coupling factor proportional to (NT)2.

To combat the latter two effects, one could restrict the
available platforms to those officially approved, and to
police the set of API standards. Or one could take steps to
coerce efficient data acquisition at the protocol level. The
TINE control system has now introduced many new
second order hand-shaking features in this direction.

2nd Order: Contract-Negotiation
Client applications (and middle layer servers) require

data from the control system for display and control of the
machine. Specifically tailoring applications for efficient
data transfer seldom enters into the picture. Indeed some
APIs do not even offer this capability.

So on the one hand we have client applications driving
control system data flow by making transaction requests
(contracts), and on the other we have servers which bear
the brunt of any ensuing scalability or efficiency
problems. Servers are of course responsible for collecting
the data and controlling the hardware. Thus, minimizing
the impact of a server’s data delivery plays a strong role
regarding scalability.

Various strategies are available for reducing NT and NC
in the above equations. In principle, one could use a
purely push approach, where all of a server’s available
data are pushed via multicast onto the network. Although
this might reduce the server load, it could drastically
increase the overall load on the network. In addition it
would require clients to sift through all data from a server
in order to find the portion of interest (increasing client
load). Nonetheless, pushing certain popular data elements
(such as beam energy and current) is in general a good
idea.

A server may also reduce the number of transactions it
deals with if it can analyze the initial client request and, if
possible, map it onto an existing contract, or anticipate
further requests and appropriately restructure (negotiate)
the contract request. We shall show below how this is
done. In order to understand the principles involved, we
present a brief review of control system API models.

We note that efforts to keep the dispatch load LD to a
minimum should in any case be made. The best practice
involves simply copying ready data within the dispatch
(rather than launching into numerical calculation or
hardware readout).

CONTROL SYSTEM MODELS

Database Model
One can view the data flowing in a control system as

deriving from elements in a database. This is the EPICS
[3] approach, where one transfers process variables

between the client and server. So the process variables
have names, and the actions on the variables are one of
put, get, or monitor.

Device Server Model
One can regard control system elements as controllable

objects managed by a server. The instance of such an
object is a device, which has a hierarchical name. The
actions pertaining to the device are given by its
properties. With minor differences in nomenclature and
degree of object-orientation this is the model used in ACS
[4], DOOCS [5], STARS [6], TANGO [7], and TINE.

Property Server Model
Certain control elements do not lend themselves well to

a device oriented view but nonetheless follow the basic
hierarchical naming scheme of the device server. This is
typically true of middle layer services. Here one does not
think of a device having properties, but of a property
applying to different keywords. This model is also
sometimes used in STARS and TINE, but is not available
in TANGO or DOOCS.

TRANSACTION COERCION
Below we give some examples of transaction coercion

and make frequent references to the property mentioned
in the device server and property server models above, as
this is the real focal point of the server transaction.

Multi-Channel Arrays
Client panels frequently attach individual elements of a

collection to different display widgets, e.g. power supply
controller (PSC) currents, beam position monitor (BPM)
positions, or vacuum pressures. In large machines, this
could amount to 100s if not 1000s of single elements.

TINE, however, allows a registered property to declare
itself a multi-channel array (MCA), capable of delivering
all elements of a given property as a vector (with a device
order determined by the server). A rich client might
directly request an MCA with all elements. Panels or
strictly OO clients will not do this. However, contracts to
obtain a single element of such properties are now
renegotiated into a contract delivering the entire array.
The client is informed via 2nd order handshaking as to the
array index to device cross-reference. Thus a server only
maintains a single MCA contract. The data arriving at the
client is parcelled out into the individual single-element
calls underneath the API. Recently, additional server side
registration enables the specification of group devices, for
cases where a property logically separates into sub-
groups.

User-defined Types (Structures)
TINE also allows a server to define its own data types

(structures) which a property can use in order to delivery
a collection of data as an atomic unit.

Although a wonderful advent for rich client
applications, structures present a display problem for

WECOAA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

20

Building reliable systems

simple panel clients, which are more likely to request the
structure fields individually. A server seeing such a
request will deliver the entire structure, which will be re-
packaged at the client. Again, many individual requests
will collapse to a single contract managed by the server.

Collapsing Equivalent Contracts
In order to reduce the number of transactions it is

important to make sure that equivalent calls collapse to
the same contract. As aliases assume their canonical
names when accessed via a client, they are unproblematic
in this regard. However, a de-facto alias (device number
instead of name) or an irregular array length or data type
could result in a transaction occurring multiple times.
Although possible to deal with via property registration, it
is generally up to the server to reject non-standard
requests with the appropriate error message.

Polling Intervals and Scheduling
Client applications sometimes need to know ‘the

moment something happens’ and therefore request an
update rate much faster than is otherwise necessary. A
server can gracefully coerce such impatient clients to use
a slower update rate by establishing a minimum polling
interval. Once again, 2nd order hand-shaking renegotiates
this with the client. A server can satisfy the needs of its
clients by scheduling the requested property the moment
there are new data to send, thereby reducing latency to
essentially zero and obviating any need for fast polling.

Steering the Acquisition Mode
The payload delivered in some transactions can be very

large (e.g. video frames or large traces). So even though
the number of transactions might be at a minimum, the
number of clients receiving the payload can result in a
drain on network resources. The best practice here is to
coerce all clients interested in large-payload transactions
to use TINE multicast. A property can automatically
renegotiate all asynchronous contracts to use multicast
access (and reject synchronous requests), if so registered.

In a similar vein, properties can also reject synchronous
calls in such a manner that an asynchronous listener is
inserted under the synchronous call at the client side.

On the other hand, asynchronous monitoring makes no
sense if the monitored data are static (do not change). An
attempt to monitor such data will result in instructing the
client layer to cancel the monitor.

Exclusive Read
A server can declare a property to have exclusive read

characteristics, making it available only to those clients
who pass through the same security screening applied to
write transactions (commands). This can be used to allow
time-consuming reads (e.g. extra large video signals) to
be available only to a subset of the total client space.

RESULTS
Making use of these 2nd order techniques generally

involves investing some time at the server front end,
registering properties so that transaction coercions can
take place. The benefits of doing this, however, can be
dramatic. Some examples follow.

The FLASH magnet control consists of approximately
260 PSCs and is realized by various TINE servers (a
primary server running on a Solaris host, and several
PC104 servers running embedded linux). The client side
applications are primarily DOOCS DDD [8] panels and
MATLAB applications, all of which acquire settings and
values from each PSC individually. Prior to introducing
the techniques described above, the primary server had a
constant background of ~1060 contracts, was being
synchronously polled with > 500 contracts per second,
and was at the high end of CPU usage. By introducing
MCA access and static listeners for most of the
synchronous polling, the number of background contracts
is now ~ 50, there are much fewer synchronous calls, and
the CPU usage is now back to 10 % or less. The client
applications themselves were not modified in any way,
other than relinking with the new libraries.

The mixed 100 Mbit/1Gbit infrastructure at PETRA3
introduces complications when delivering video images
via multicast, especially if Gbit video servers or routers
have 100Mbit video clients. As there is limited flow
control, data delivery parameters must be precisely tuned.
The most reliable performance was achieved by
enforcing, via property registration, multicast access and a
minimum polling interval.

The PETRA3 orbit server consists of ~270 Libera BPM
readout modules which are attached to a single Linux
CPU. Most properties are registered to provide MCA
access. A minimal polling interval of 10 Hz holds the
regular bevy of ~20 clients to a set of ~35 contracts and
with a total CPU load of ~6 %.

We have shown in this report various methods whereby
a server can take control over its clients. A server can
continue to provide all callers with the information
requested, but do so on its own terms.

REFERENCES
[1] http://tine.desy.de
[2] Duval et al., “TINE: An Integrated Control System for

HERA”, Proceedings, PCaPAC’99, 1999.
[3] http://www.aps.anl.gov/epics/
[4] http://www.cosylab.com/solutions/ICT/ACS/
[5] http://doocs.desy.de
[6] http://pfwww.kek.jp/stars/
[7] http://www.tango-controls.org
[8] http://jddd.desy.de/
[9] F.Schmidt-Foehre et al, “Control System Integration
of the PETRA III BPM System based on Libera
Brilliance”, Proceedings, ICALEPCS 2009.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA02

System Engineering Building reliable systems

21

