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Abstract 

Over the years the TINE control system [1] has 
implemented numerous strategies for achieving high 
efficiency data transport within a distributed control 
system.  This was essential for controlling a large 
machine such as HERA [2]. Our recent experience with 
controls for the PETRA3 and FLASH accelerator 
complexes at DESY has revealed new scalability issues.  
The principal problem has been in limiting the 
communications load on the front end servers and 
network in the presence of increasing numbers of client 
applications, many of which are written by 'part-time' 
developers who prefer simple API calls, or use 
development platforms which support only such calls.  A 
single such application, polling hundreds of devices, may 
generate ~1000 calls per second to a single server.  This 
load on the server can be reduced if, for example, the 
intermediate software layers can consolidate such calls 
into array transfers.    TINE now offers various 'second-
order' protocol features which go a long way toward not 
just allowing but 'enforcing' efficient data transfer. We 
shall describe some of these features in this article.  

INTRODUCTION 
In this report we concentrate on how the control system 

protocol can be a limiting factor in scalability regarding 
large distributed systems.  To this end it is necessary to 
review some popular communication strategies along 
with application programmer interface (API) paradigms. 

DISTRIBUTED DATA FLOW 
0th Order: Transaction-based Client-Server 

The earliest versions of most popular control system 
protocols made exclusive use of transaction based client-
server polling.  This data-flow pattern has the inherent 
advantage of a ‘keep it simple’ strategy, but can quickly 
run into scalability issues.  These often manifest 
themselves as server-load problems rather than network-
load problems, although both issues are important. 

We take the average load (per second) on a server due 
to polling clients to be roughly given by  

TDTcS ULNNL ×××~  (1) 

where Ls is the additional load on the server process due 
to processing client transactions, NC is the number of 
clients, NT is the average number of transactions per 
client, LD is the average dispatch load of a transaction 
request at the server, and UT is the average client polling 
rate.  Equation (1) is of course schematic.  The loads LS 

and LD will be taken to refer to the number of CPU cycles 
devoted to the client-side transactions. 

Note that ‘throwing money and threads’ at the problem 
does not reduce the load as defined above.  Faster, multi-
core computers are of course able to do more in a given 
time interval.  Using a thread for each transaction can also 
reduce the impact of sluggish servers on the client side.  
But in the end, the total number of CPU cycles involved 
will be the same (if not more, due to extra thread 
synchronization and context switching). 

Similarly, the average load on a server’s network port is  

TTTcN UPNNL ×××~  (2) 

where LN is the network load (bytes per second), NC, NT 
and UT are as before, and PT is the average transaction 
payload.  This does not depend on the number of threads 
used or the CPU power of the server. 

A real reduction in load (server or network) involves 
reducing either NC and NT or both in the above equations.  
This can either be accomplished artificially (for instance 
by imposing restrictions on the number of and location of 
clients allowed to run and the update rates they are 
allowed to use) or moving to other data flow models. 

1st Order: Contract-based Publish-Subscribe 
As most control system data is used primarily in 

display at the client side, moving to an asynchronous 
publish-subscribe model can work wonders reducing the 
load on a server.  Doing so eschews the ‘keep it simple’ 
approach, as connection and contract management are 
needed.  A transaction request now results in a contract 
managed by the server, along with a table of attached 
clients. Nonetheless, the average load on a server due to 
client requests essentially becomes 

TDTS ULNL ××~   (3) 

That is, the number of clients no longer plays a role. A 
transaction request is cached and made once on behalf of 
all NC clients.   

The outgoing network load (2) essentially remains the 
same, as the transaction results need to be passed to all 
interested parties.  The incoming contribution to network 
load is for all practical purposes decimated, as transaction 
requests are made far less often.  In order to further 
reduce the network load, one can adopt a ‘send-on-
change’ policy, or reduce the number of clients by 
delivering data via multicast (especially effective for 
those transactions involving large payloads).  The TINE 
control system protocol supports both of these features. 

Asynchronous, publish-subscribe based protocols have 
a much larger domain of applicability, which however is 
still finite for several reasons.  First, the API paradigm 
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still permits plaguing a server with an extra large number 
of transactions, NT.  Second, if application programmers 
have complete freedom in choosing their platforms and 
programming styles, client applications may still engage 
in synchronous polling, effectively reintroducing the NC 
factor, and (depending on contract management) possibly 
imposing an additional asynchronous/synchronous 
coupling factor proportional to (NT)2. 

To combat the latter two effects, one could restrict the 
available platforms to those officially approved, and to 
police the set of API standards.  Or one could take steps to 
coerce efficient data acquisition at the protocol level.  The 
TINE control system has now introduced many new 
second order hand-shaking features in this direction. 

2nd Order: Contract-Negotiation 
Client applications (and middle layer servers) require 

data from the control system for display and control of the 
machine.  Specifically tailoring applications for efficient 
data transfer seldom enters into the picture.  Indeed some 
APIs do not even offer this capability. 

So on the one hand we have client applications driving 
control system data flow by making transaction requests 
(contracts), and on the other we have servers which bear 
the brunt of any ensuing scalability or efficiency 
problems.  Servers are of course responsible for collecting 
the data and controlling the hardware.  Thus, minimizing 
the impact of a server’s data delivery plays a strong role 
regarding scalability. 

Various strategies are available for reducing NT and NC 
in the above equations.  In principle, one could use a 
purely push approach, where all of a server’s available 
data are pushed via multicast onto the network.  Although 
this might reduce the server load, it could drastically 
increase the overall load on the network. In addition it 
would require clients to sift through all data from a server 
in order to find the portion of interest (increasing client 
load). Nonetheless, pushing certain popular data elements 
(such as beam energy and current) is in general a good 
idea. 

A server may also reduce the number of transactions it 
deals with if it can analyze the initial client request and, if 
possible, map it onto an existing contract, or anticipate 
further requests and appropriately restructure (negotiate) 
the contract request. We shall show below how this is 
done.  In order to understand the principles involved, we 
present a brief review of control system API models. 

We note that efforts to keep the dispatch load LD to a 
minimum should in any case be made.  The best practice 
involves simply copying ready data within the dispatch 
(rather than launching into numerical calculation or 
hardware readout). 

CONTROL SYSTEM MODELS 

Database Model 
One can view the data flowing in a control system as 

deriving from elements in a database.  This is the EPICS 
[3] approach, where one transfers process variables 

between the client and server.  So the process variables 
have names, and the actions on the variables are one of 
put, get, or monitor. 

Device Server Model 
One can regard control system elements as controllable 

objects managed by a server.  The instance of such an 
object is a device, which has a hierarchical name.  The 
actions pertaining to the device are given by its 
properties.  With minor differences in nomenclature and 
degree of object-orientation this is the model used in ACS 
[4], DOOCS [5], STARS [6], TANGO [7], and TINE.  

Property Server Model 
Certain control elements do not lend themselves well to 

a device oriented view but nonetheless follow the basic 
hierarchical naming scheme of the device server.  This is 
typically true of middle layer services.  Here one does not 
think of a device having properties, but of a property 
applying to different keywords.  This model is also 
sometimes used in STARS and TINE, but is not available 
in TANGO or DOOCS. 

TRANSACTION COERCION 
Below we give some examples of transaction coercion 

and make frequent references to the property mentioned 
in the device server and property server models above, as 
this is the real focal point of the server transaction.   

Multi-Channel Arrays 
Client panels frequently attach individual elements of a 

collection to different display widgets, e.g. power supply 
controller (PSC) currents, beam position monitor (BPM) 
positions, or vacuum pressures.  In large machines, this 
could amount to 100s if not 1000s of single elements.   

TINE, however, allows a registered property to declare 
itself a multi-channel array (MCA), capable of delivering 
all elements of a given property as a vector (with a device 
order determined by the server). A rich client might 
directly request an MCA with all elements.  Panels or 
strictly OO clients will not do this. However, contracts to 
obtain a single element of such properties are now 
renegotiated into a contract delivering the entire array.  
The client is informed via 2nd order handshaking as to the 
array index to device cross-reference. Thus a server only 
maintains a single MCA contract.  The data arriving at the 
client is parcelled out into the individual single-element 
calls underneath the API.  Recently, additional server side 
registration enables the specification of group devices, for 
cases where a property logically separates into sub-
groups. 

User-defined Types (Structures) 
TINE also allows a server to define its own data types 

(structures) which a property can use in order to delivery 
a collection of data as an atomic unit.   

Although a wonderful advent for rich client 
applications, structures present a display problem for 
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simple panel clients, which are more likely to request the 
structure fields individually. A server seeing such a 
request will deliver the entire structure, which will be re-
packaged at the client.  Again, many individual requests 
will collapse to a single contract managed by the server. 

Collapsing Equivalent Contracts 
In order to reduce the number of transactions it is 

important to make sure that equivalent calls collapse to 
the same contract. As aliases assume their canonical 
names when accessed via a client, they are unproblematic 
in this regard.  However, a de-facto alias (device number 
instead of name) or an irregular array length or data type 
could result in a transaction occurring multiple times.  
Although possible to deal with via property registration, it 
is generally up to the server to reject non-standard 
requests with the appropriate error message. 

Polling Intervals and Scheduling 
Client applications sometimes need to know ‘the 

moment something happens’ and therefore request an 
update rate much faster than is otherwise necessary. A 
server can gracefully coerce such impatient clients to use 
a slower update rate by establishing a minimum polling 
interval.  Once again, 2nd order hand-shaking renegotiates 
this with the client.  A server can satisfy the needs of its 
clients by scheduling the requested property the moment 
there are new data to send, thereby reducing latency to 
essentially zero and obviating any need for fast polling. 

Steering the Acquisition Mode 
The payload delivered in some transactions can be very 

large (e.g. video frames or large traces).  So even though 
the number of transactions might be at a minimum, the 
number of clients receiving the payload can result in a 
drain on network resources. The best practice here is to 
coerce all clients interested in large-payload transactions 
to use TINE multicast. A property can automatically 
renegotiate all asynchronous contracts to use multicast 
access (and reject synchronous requests), if so registered.  

In a similar vein, properties can also reject synchronous 
calls in such a manner that an asynchronous listener is 
inserted under the synchronous call at the client side. 

On the other hand, asynchronous monitoring makes no 
sense if the monitored data are static (do not change). An 
attempt to monitor such data will result in instructing the 
client layer to cancel the monitor. 

Exclusive Read 
A server can declare a property to have exclusive read 

characteristics, making it available only to those clients 
who pass through the same security screening applied to 
write transactions (commands).  This can be used to allow 
time-consuming reads (e.g. extra large video signals) to 
be available only to a subset of the total client space. 

RESULTS 
Making use of these 2nd order techniques generally 

involves investing some time at the server front end, 
registering properties so that transaction coercions can 
take place.  The benefits of doing this, however, can be 
dramatic.  Some examples follow. 

The FLASH magnet control consists of approximately 
260 PSCs and is realized by various TINE servers (a 
primary server running on a Solaris host, and several 
PC104 servers running embedded linux).  The client side 
applications are primarily DOOCS DDD [8] panels and 
MATLAB applications, all of which acquire settings and 
values from each PSC individually.  Prior to introducing 
the techniques described above, the primary server had a 
constant background of ~1060 contracts, was being 
synchronously polled with > 500 contracts per second, 
and was at the high end of CPU usage.  By introducing 
MCA access and static listeners for most of the 
synchronous polling, the number of background contracts 
is now ~ 50, there are much fewer synchronous calls, and 
the CPU usage is now back to 10 % or less.  The client 
applications themselves were not modified in any way, 
other than relinking with the new libraries. 

The mixed 100 Mbit/1Gbit infrastructure at PETRA3 
introduces complications when delivering video images 
via multicast, especially if Gbit video servers or routers 
have 100Mbit video clients.  As there is limited flow 
control, data delivery parameters must be precisely tuned.  
The most reliable performance was achieved by 
enforcing, via property registration, multicast access and a 
minimum polling interval. 

The PETRA3 orbit server consists of ~270 Libera BPM 
readout modules which are attached to a single Linux 
CPU.  Most properties are registered to provide MCA 
access.  A minimal polling interval of 10 Hz holds the 
regular bevy of ~20 clients to a set of ~35 contracts and 
with a total CPU load of ~6 %. 

We have shown in this report various methods whereby 
a server can take control over its clients.  A server can 
continue to provide all callers with the information 
requested, but do so on its own terms. 
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