
FESA3
THE NEW FRONT-END SOFTWARE FRAMEWORK AT CERN

Alexander Schwinn, Solveigh Matthies, Dorothea Pfeiffer(GSI, Darmstadt)
Michel Arruat, Leandro Fernandez, Frank Locci, David Gomez Saavedra (CERN, Geneva)

Abstract

Currently the LHC (Large Hadron Collider, located at
CERN/Switzerland) is controlled by the use of FESA2.10
(FrontEnd Software Architecture v. 2.10) classes. FESA3
is not only an update of FESA2.10, but a completely new
approach. GSI plans to use the FESA system at the com-
plex FAIR facility.

One of the main reasons to introduce FESA3 was to pro-
vide a framework which can be shared between different
labs. This is accomplished by splitting up the FWK into a
common part, which is used by all labs, and a lab-specific
part, which allows e.g. a lab dependent implementation of
the timing-system.

FESA3 is written in C++, runs a narrow interface (Re-
mote Device Access, a middleware which encapsulates
CORBA), supports multiplexing of different accelerator-
cycles, is completely event driven and uses thread priori-
ties for scheduling. It provides all FESA2.10 functionali-
ties and additionally introduces several new features.

FESA3 is integrated in the Eclipse IDE as a plugin. Us-
ing this plugin, the user can easily create his FESA-class
design (xml file), generate the C++ source code, fill the
device-specific methods, and deploy the binary on a front
end.

As well as the framework the Eclipse plugin has a lab
specific implementation.

An operational release for FESA3 is planned end of
2010.

THE PURPOSE OF FESA3

FESA3 is a software framework which provides an easy
way for developers to produce device classes by generating
most of the code automatically. It supports multiplexing of
different accelerator-cycles and many other features which
can be used by the class-developer. The main purpose of
the framework is to provide an common and unified way to
develop device classes. This approach saves a lot of work
and simplifies debugging, documentation and code adop-
tion for the class-developer and all involved parties.

THE ROOTS OF THE FESA
FRAMEWORK

All early versions of the FESA framework were devel-
oped solely by the CERN facility. FESA3 is the first release

which is developed as an collaboration between CERN and
the GSI. This collaboration was the main reason to restruc-
ture some of the Fesa2.10 fundamental internal parts and to
finally go for a new major release.

FESA3 continues to provide all services from older ver-
sions and as well extends the common approach by addi-
tional services which where demanded by the CERN user
community.

FESA3 AT THE FAIR FACILITY

For the FAIR facility several new accelerator installa-
tions will be built at GSI.

Central aspect is an increased number of research pro-
grams resulting in up to five beams in parallel. The FAIR
facility will be controlled by a new control system which
will be able to support all aspects of the complex GSI/FAIR
operations on a common technical basis. The control sys-
tem for the FAIR facility currently is in the design phase.

One part of this new control system will be the device
software which runs on the front ends. FESA was choosen
as software framework since it already proved itself at the
LHC at the CERN facility and allows to pass the device-
specific implementation directly to the device expert.

CLASS DEVELOPMENT WORKFLOW

The FESA3 Eclipse-plugin guides the class developer on
his way to develop a FESA3 class. The following steps
have to be performed to do so:

1. Design

In the first step the developer needs to design his class
according to his needs. This process involves the spec-
ification of Properties, Fields, Server- and RealTime-
Actions and their dependencies on each other. The
design itself is done via a comfortable XML editor,
which is integrated in the FESA3 Eclipse-plugin and
coupled to an XSD schema for validation.
(see figure 1)

2. Code Generation

Code generation may be started in the plugin if the
class design is valid. An XSLT engine generates C++
code using the class design as input.

AND THE FAIR FACILITY

WECOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

22

Development and application frameworks

Figure 1: screenshot of the class-design in the FESA
Eclipse-plugin

3. Implementation

The code generation provides methods which need to
be completed by the class developer. Those Server-
and RealTime-Actions allow to use specific device
drivers for the hardware. External driver libraries can
be included in a class specific make-file.

4. Instantiation

Since the FESA3 class may run on different front
ends, the developer needs to create an instantiation
document per frontend. Inside this document all con-
figuration parameters for this specific frontend are
stored. Similar to the class-design, the instantiation
document is generated by the plugin and can be edited
within it’s xml editor.

5. Compilation

As soon as the implementation is finished, the com-
pilation and linking process may be started. The out-
come will be a class binary for a predefined platform,
which is ready to run.

6. Deployment

The resulting binary, the instantiation file and all other
dependent files need to be placed on the frontend for
which they were configured and to which the device-
hardware is connected.

7. Execution

Finally the class can be executed and debugged. The
FESA3 navigator-tool may help to build up a connec-
tion to the class and debug all possible scenarios.

The described workflow is not strictly forward but also al-
lows to roll back and redo any step which is necesarry.

FUNCTIONAL OVERVIEW

Basic Internal Design

As shown by the use-case diagram below, request-
handling and hardware control are the two complementary
services equipment-software has to model. The two dif-
fer very much in nature since request-handling is an on-
demand service, whereas hardware control is subject to
tight real-time constraints. Obviously, request handling
must run at a lower level of priority and shall not be able
to preempt the real-time task. In order to decouple the
two, equipment-software includes a software abstraction of
the device. Thanks to this abstraction, an operator does
not directly see the hardware device, but rather accesses it
through the so called Server side. (see reference [1])

Figure 2: Separation of Server and RealTime side. [1]

The system is split in two logical layers: RealTime,
which implements all parts that are directly triggered by
events and Server which models the equipment interface
and implements the middleware access. Both services are
physically implemented on the same hardware platform. It
is possible to run these two services in the same process,
or in two separate processes. Devices are implemented as
objects in the object-oriented software terminology. Each
FESA3 class represents a devicetype and allows to manage
different instances of this devicetype. A FESA3 equipment
can represent a collection of different FESA classes, which
depend on each other.

The event driven RT-system

In FESA3 RealTime-Actions can be triggered by differ-
ent types of event, from various event sources.(see figure
3) The possible source types are listed here:

• Timing Event

This event source is meant to be the real accelerator
timing. Different events corresponding to different cy-
cles and machines are received with this source if the
frontend is connected to the timing receiver hardware.

• Timer Event

A timer event is launched by a internal clock on a pe-
riodic interval. The developer can configure this inter-
val in the instantiation document per frontend.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA03

Accelerator Controls Development and application frameworks

23

Figure 3: Basic event based functional structure of the FESA3 framework

• Custom Event

In FESA3 the developer as well has the possibility
to implement his own customized event source. This
event source is used to support all other hardware and
software event sources which do not use the accelera-
tor timing.

• On Demand Event

To communicate between Server and RealTime part of
a FESA3 class there is not only the notification queue,
which connects the RealTime to the Server part, but
also the On-Demand mechanism, which works the
other way around. Via socket connections it allows
to trigger RealTime-Actions from the Server side.

• On Subscription Event

FESA3 allows to establish dependencies between dif-
ferent FESA3 classes. E.g. one FESA3 class can sub-
scribe to properties of another FESA3 class by using
this event source.

The client interface

The client has different possibilities, to communicate
with a FESA3 class using the RDA client interface. Access
methods for the client are Get, Set, MonitorOn and Moni-
torOff. The API to these methods is a narrow one. Figure
4 shows the relation between the RDA DeviceServer, the
middleware layer and the client.

To specify the proper attribute(s), there are several pa-
rameters:

• Property

The property describes a collection of data, which can
be obtained or modified with different client access
methods.

• Device

A FESA3 class represents a device type. A single
FESA class can control many devices of the same

type. Within the parameter Device the client can spec-
ify the proper device instance which is to access.

• CycleSelector

On a multiplexed property, with the cycle selector
string the client can select the cycle (virtual acceler-
ator), he wants to work with. On a property which is
not multiplexed the cycle selector can stay empty.

• Value

Get methods retrieve data as an instance of the type
rdaData. RdaData can store an array of mixed data
types. Besides the data itself, each entry allows to
store additional information.

• Context

The context is used to pass parameters (filters) to the
properties of a FESA3 class.

• ReplyHandler

Monitor on calls require the implementation of reply
handlers. As soon as new data arrives, the middle-
ware triggers the reply handler in which the data is
processed.

• Request

This class is the virtual handle to a subscription. It is
filled by the MonitorOn call and is used to keep track
on a subscription and to terminate it if it is not needed
any more.

WECOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

24

Development and application frameworks

Figure 4: The CERN RDA - middleware layer. (see reference [2])

class relationship

Unlike FESA2.10, FESA3 provides three different ways
of class relationship, association, composition and inheri-
tance:

• Association (see figure 5)

Figure 5: Association between two unique FESA3 classes

An association specifies a light coupling between two
FESA3 classes. The two classes run independently
and do not rely on each other (e.g. class A may shut
down while class B is still running). The two classes
can be deployed on different frontends.

• Composition (see figure 6)

Using a composition the developer can create a strong
coupling between FESA3 classes. The deployment
of class A means to deploy the whole class-tree. As
well it is possible to start B with only C and D as
sub-classes and without A as a smaller composition.
The lifetime of the composition depends on the life-

Figure 6: Composition of many FESA3 classes, repre-
sented as one class

time of the base-class. All classes need to run on the
same frontend. All classes within the composition are
standard FESA3 classes and can be used seperately as
well.

• Inheritance (see figure 7)

The definition of inheritance in FESA3 consists of tree
characteristics:

– Properties/RTActions defined by a baseclass are
available for any subclass.

– Properties/RTActions defined by a baseclass can
be overridden (explicitly).

– The device model of a derived class fully inherits
from the device model of its baseclass.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA03

Accelerator Controls Development and application frameworks

25

Figure 7: Inheritance between different FESA3 classes

The split between framework and lab part

The FESA2.10 framework was strongly coupled with the
CERN Oracle database, the CERN Timing and several file
paths. As one of the major changes this strong coupling
has been removed in FESA3. Each institute which is using
FESA3 now has to provide a sub-package where institute-
specific code can be used. This split does not only touch the
C++ code. The whole process of creating a FESA3 class is
involved. Now it is possible to have a specific metamodel
which triggers an adapted code generation. As well the
FESA3 Eclipse plugin can be adjusted to the needs of the
particular institute.

OUTLOOK

Currently FESA3 still is in the pre-beta phase. An oper-
ational beta for FESA3 will be released end of 2010. For
later releases the following features and tasks are planned:

• Transaction

On larger accelerators the possibility to synchro-
niously trigger a Set for many frontends is needed.
This service is called ”transaction”.

• On-change/deadband support for subsribers

This service allows clients to choose, if they will get
notified if a value did not change at all, or if it changed
only within a predefined deadband.

• Tests and benchmarks of the framework

Tests of the FESA3 performance in terms of reaction-
speed, data throughput and CPU usage need to be
done.

REFERENCES

[1] A. Schwinn, D. Pfeiffer, R. Baer, “GSI-FAIR Baseline Tech-
nical Report - Front-End Software Architecture”, GSI, Ger-
many.

[2] Kris Kostro, Joel Lauener, Nikolai Trofimov, Wojciech
Gajewski, Ilya Yastrebov, “http://cmw.web.cern.ch”, CERN,
Geneva

WECOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

26

Development and application frameworks

