
QT EPICS DEVELOPMENT FRAMEWORK*

A. Rhyder#, A. Owen, G Jackson. Australian Synchrotron

Abstract
QCa is a layered software framework based on Qt for

accessing EPICS data using Channel Access on a range of
platforms. It is used on several beamlines at the
Australian Synchrotron. The QCa framework provides
object oriented C++ access to control systems using
EPICS (Experimental Physics and Industrial Control
System). It is based on Qt, a widely used cross-platform
application development framework. GUI or console
based applications can be written that use QCa at several
levels. QCa includes Qt plugin libraries, EPICS aware
widgets, data formatting classes, and classes for accessing
raw EPICS data in a Qt friendly way. QCa also includes
an application for displaying forms produced by the Qt
development tool ‘Designer’. Using this application a
complete EPICS GUI system can be generated without
writing any code. A GUI system produced in this way can
interact with existing EPICS display tools such as EDM.
QCa handles much of the complexities of Channel Access
including initiating and managing a channel. Applications
using QCa can interact with Channel Access using Qt
based classes and data types. Channel Access updates are
delivered using Qt’s signals and slots mechanism.

INTRODUCTION
Channel Access is described as ‘one of the core

components of an EPICS system. It is the software
component that that allows a Channel Access client
application to access control-system data which may be
located on different hosts throughout a network’ [1]

While CA is the default means to access EPICS data, its
use is not trivial. A significant understanding of how CA
works is required to execute the steps required to read or
write data. The complexity of setting up and terminating
CA requests leaves room for error. Also, CA uses a C
programming interface and so does not make use of
object oriented programming techniques.

Qt is a cross-platform application and UI framework. It
includes a C++ class library and a cross-platform IDE.

The QCa framework provides a Qt based C++
framework for easy CA access to EPICS data.

It provides access to EPICS data at several levels from
programmatic reading and writing of data, EPICS aware
widgets for developing GUI based applications through to
EPICS aware Qt plugins such as push buttons, sliders, and
text widgets. When these plugins are used within the Qt
form development tool ‘designer’ EPICS GUIs can be
developed without the need for any code development.

QCA FRAMEWORK HIERARCHY
OVERVIEW

The QCa framework is designed to allow access to CA
data in the most appropriate form. The framework is
based on a hierarchy of classes as shown in Table 1. This

hierarchy is open at all levels to the developer.
Appropriate use of the hierarchy is shown in Table 1.

Table 1: QCa framework hierarchy

Type of
access to CA
data.

Functionality Main classes

C++ access to
the CA library.

Provides
convenient C++
access to the CA
library.

CaObject

Qt based
access to CA.

Hides CA
specific
functionality.
Adds Qt
functionality
such as signals
and slots.

QCaObject

Data type
independent
access.

Hides EPICS
data types,
providing read
and write
conversions
where required.

QCaInteger
QCaString
QCaFloating

EPICS aware
graphical
widgets.

Implements
graphical Qt
based widgets
that provide
access to EPICS
data.

QCaLabel
QCaLineEdit
QCaPushButton
QCaShape
QCaSlider
QCaSpinBox
QCaComboBox
QCaPlot

EPICS
aware
graphical Qt
plugins.

Adds Qt plugin
interfaces to
EPICS aware
widgets.

QCaLabelPlugin
QCaLineEditPlugin
QCaPushButtonPlugin
QCaShapePlugin
QCaSliderPlugin
QCaSpinBoxPlugin
QCaComboBoxPlugin
QCaPlotPlugin

GUI support
widgets

Implements Qt
based widgets
that support
control system
GUIs. These
widgets do not
access the CA
library.

AsGuiForm
GuiPushButton
CmdPushButton
Link

 __

*Work supported by the Australian Synchrotron
#andrew.rhyder@synchrotron.org.au

WEPL002 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

30

Development and application frameworks

C++ ACCESS TO THE CA LIBRARY
The CaObject base class provides a C++ wrapper

around the CA library. While available to the developer, it
was written mainly to provide a level of abstraction
within the Qt based QCaObject class. It is recommended
to be used where a Qt framework is not available.

QT BASED ACCESS TO CA
The QcaObject class provides full access to EPICS data

while hiding most CA specific functionality such as link
status, connections and channels.

The QcaObject class adds Qt functionality. Data can be
written using a Qt slot and Qt signals are available for
data and status information as required. Qt data types are
used to represent all EPICS data.

The data in the update signals may be of any type and is
represented by a Qt variant.

DATA TYPE INDEPENDENT ACCESS
The classes QCaInteger, QCaString, and QCaFloating

are based on QCaObject and interpret all data as integers,
strings, and floating point numbers respectively. They are
used to provide access to EPICS data in a known format
regardless of the actual data type of the EPICS data. For
example, string data is always required for a text label
regardless of the underlying EPICS data type. While some
conversions are unlikely to be of much practical use, all
conversions are permitted.

EPICS AWARE GRAPHICAL WIDGETS
The classes QCaLabel, QCaLineEdit, QCaPushButton,

QCaShape, QCaSlider, QCaSpinBox, QCaComboBox,
and QCaPlot allow an application to add graphical objects
to a user interface that are EPICS aware. That is, they
interact directly with EPICS data. The application sets up
the EPICS process variable name and other parameters
that define how the widget interacts with EPICS data. The
application does not have to handle EPICS data or any
aspect of the CA interface.

The application may supply the EPICS aware widgets
with an object that the widgets can send Qt signals to,
including error and status messages signals.

EPICS AWARE GRAPHICAL QT PLUGINS
The classes QCaLabelPlugin, QCaLineEditPlugin,

QCaPushButtonPlugin, QCaShapePlugin,
QCaSliderPlugin, QCaSpinBoxPlugin,
QCaComboBoxPlugin, and QCaPlotPlugin are EPICS
aware widgets with a Qt plugin interface.

These plugins can be used by any Qt application that
can load plugins.

They are loaded into the Qt GUI design tool ‘Designer’
which can be used to generate GUI description files that
include EPICS aware widgets. These files can be loaded

at run time by any application code, or used as source for
any application. One application that loads these files at
run time is AsGui, an MEDM/EDM replacement. A
feature of these plugins is that they are active at design
time.

GUI SUPPORT WIDGETS
The classes AsGuiForm, GuiPushButton,

CmdPushButton and Link implement Qt based widgets
that support the development of EPICS control system
GUIs. They are not EPICS aware widgets.

The AsGuiForm class can contain any Qt based
widgets, including the QCa framework’s widgets. It is
used as the scroll area in the AsGui application and can be
used to create sub forms when developing control system
GUIs in ‘designer’.

The GuiPushButton class is used to launch new GUIs.
The CmdPushButton class is used to execute any

command. Typically it would be used within a GUI to
perform an action on the local machine, such as launch
another application, or interact with an MEDM session.

The Link class provides a generic mechanism for
configuring how widgets in a GUI interact. For example,
the value in one widget can control the visibility of
another. Examples of the GUI support for Qt plugins are
shown in Figure 1.

QCA BASED APPLICATIONS
The QCa framework currently includes a couple of

applications. The main application is AsGui.
AsGui is a graphical control system user interface. It

displays EPICS aware GUIs based on user interface files
created using ‘Designer’ as shown in Figure 1.

Figure 1: A sample GUI created in designer using EPICS
aware plugins and GUI support plugins

QCaMonitor is a console application that takes a list of
EPICS process variable names as an argument and
monitors changes to the data specified by the names. It
will perform the same task as the standard EPICS
application caget. It is an example of using QCaString
objects to generate a stream of textual based updates.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL002

Accelerator Controls Development and application frameworks

31

CLASS USAGE

Figure 2: Typical QCa class usage

REFERENCES

[1] Philip Stanley Channel Access Client Library
Tutorial. Los Alamos National Laboratory.
http://lansce.lanl.gov/EPICSdata/ca/client/caX5Ftutor
-1.html

WEPL002 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

32

Development and application frameworks

