
PROGRAMMING INTERFACES FOR RECONFIGURABLE
INSTRUMENTS

Matej Kenda, Hinko Kočevar, Tomaž Beltram, Aleš Bardorfer, Instrumentation Technologies d.d,
Solkan, Slovenia

Abstract
Application Programming Interfaces (APIs) provided

by the manufacturers of the instruments for the
accelerators are a very important part of the functionality.
There are many interface standards (EPICS, TINE,
Tango,...) and even same standard can be used in various
ways.

Important features of modern instruments are
reconfigurability and embedded computing.

The developers of instruments that need to be
connected to a control system are facing different
requirements: adherence to standard protocols and
support of reconfigurable instruments with diverse
capabilities with a consistent interface.

Instrumentation Technologies has implemented a well
accepted solution with its proprietary Control System
Programming Interface (CSPI) layer and adapters for each
standard protocol.

There are new challenges like reconfigurability, quality
of service, discovery and maintainability that are being
addressed with improved Measurement and Control
Interface (MCI).

CONTROL SYSTEM AND SOFTWARE
INTERFACES

There are quite some
parameters that define
environment in which the
Control System operates. We
can find heterogeneous
instruments with different
levels of complexity. Beside
that the equipment is distributed
over large remote regions and
needs to provide reliable access
regardless of the distance from
the control room (see Fig. 1).
Another characteristic of such
operating environment is that
the control is centralized, but

the data acquisitions is distributed and to some extent also
the data processing.

Based on that we can define interface requirements
from the Control System's point that must cover following
areas:

• device discovery, identification and capabilities
• operation mode control and configuration

parameters
• events, alarms and health state monitoring
• data acquisition and attributes (data type, size,

offset, time-stamp)

• error handling

INSTRUMENT MANUFACTURER'S VIEW
From the reverse

point of view, an
instrument can be
used in different
environments (see
Fig. 2). Requests for
data can come from
different sources for
different purposes.

• Control System: Different types of control
system protocols

• Other instruments: Instrument interoperability,
multiple instruments working together,
clustering, shared processing,

• Development Lab: Development, testing of
new, updated instruments

• Maintenance: Diagnostics, repair
Not all of the access paths are active concurrently.
A great deal of the information access has a common

denominator, defined by the type of the information
requested.

EMBEDDED COMPUTING
Using embedded computers in the instruments enables

instruments to behave as network attached devices with
built-in control system interfaces.

Embedded computer can be used to
• control the instrument's operation
• perform a part of digital signal processing
• provide remote access to the instrument

The embedded computer is one of the important
components of an instrument, because it provides
convenient way to bring all of the parts (hardware
modules, FPGA, software) of an instrument together into
a working application and perform certain digital signal
processing.

Software running on the embedded computer can seen
as one of the variable parts of a reconfigurable
instrument.

RECONFIGURABLE INSTRUMENTS

Physical setup and behaviour of the instrument is not

completely defined during manufacturing.

Figure: 1

Figure: 2

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL032

Accelerator Controls Development and application frameworks

91

Modern trends in development of instrumentation
encourage modularity with many standards for physical
dimensions, electrical interconnectivity and data
exchange protocols (see Fig. 3).

This leads to the following combinations:
• Reuse of modules: Hardware module MOD_A

can be used in instrument INS_A, INS_B, …
• Behaviour of the hardware module MOD_A can

be altered by loading different FPGA designs
• Instrument INS_A can comprise variable

number of modules MOD_A, MOD_B,
MOD_C, thus defining different variations of
the instrument.

Design of the software, running on such an instrument,
must be done in a way to recognise and make use of these
combinations.

In general, the responsibilities of the instrument
software can be split in several semi-independent layers:
managing hardware platform, instrument application
logic, external interfaces.

Hardware flexibility influences all of the software
layers, including external interfaces.

Semantic Types of Information
The information

transferred between the CS
and the instrument can be
divided into: digital signal
acquisition, alarms
(notifications), monitoring
and control of the instrument
state and behaviour (see Fig.
4).

Time considerations in the
data transfers involves data
rate and frequency. That is
the time that is needed to
transfer certain amount of
data and the repetition speed
how often that transfer
happens.

Every data has its origin
(data provider, source) and its destination (data consumer,
sink). Depending on the active or passive involvement of
either side in the data flow we can distinguish between
data stream (data provider push) or data on demand (data
consumer pull) as depicted in Table 1.

 PROGRAMMING INTERFACES OF
LIBERA INSTRUMENTS

Instrumentation Technologies develops families of
specialised instruments for use in the accelerators. They
are all equipped with embedded computers and have
network connectivity.

Instruments can be divided in two classes: Platform A,
Platform B. Main difference in hardware is the level of
modularity, reconfigurability and computing power.

Modern trends in instrumentation required Libera
instruments to evolve and become more modular and
reconfigurable. Platform B instruments comply to
μTCA, IPMI and other standards and comprise powerful
embedded computer. Software, developed for these
instruments had to be modified as well to support and
utilise new hardware platform.

The goal of programming interfaces on both platforms
is similar: implementation of as much functionality as
possible in a common fashion and converting that
information to a specific control system protocol as late as
possible.

Both types of interfaces provide access to the semantic
types of information described above (see Table 2).

Control System Programming Interface (CSPI)
CSPI is available on Platform A type of instruments

(Libera Briliance, Libera Brilliance Single Pass, Libera
Photon, Libera BunchByBunch). These instruments
contain energy efficient ARM based embedded computer
with limited computing power.

The operating system, used on the computer, is
stripped-down distribution of Debian Linux, running on
Linux kernel 2.6.20.

The computer is designated for proper operation of the
hardware and FPGA from powering the box on to
shutting it down and to provide network connectivity.

Hardware configuration of Platform A instruments is
defined at manufacturing. Available data and the API
are coupled together.

CSPI provides interfaces for:
• Monitoring, controlling the instrument

through a number of parameters. They are all
integer numbers and identified by numeric Ids.
The set of parameters is fixed for a certain
instrument.

• Acquisition of the signals. Functions to easily
access pre-defined number of signals are
available.

Figure 3

Figure: 4

Table:1

Table: 2

WEPL032 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

92

Development and application frameworks

• Change notifications. A callback function can
be registered, which is called with the ID of the
parameter that was modified.

Remote access is provided by:
• Generic server: transparent CSPI API access

over the TCP/IP.
• Embedded EPICS driver: EPICS IOC driver

that utilizes CSPI API. Alternative
implementation was developed at Diamond
Light Source that by-passes CSPI and
communicates with the hardware in more direct
fashion.

• Embedded Tango Server, developed by Elettra
institute.

• External Tango Server, developed as a
collaborative effort between Alba, Desy, Elettra,
ESRF and Soleil institutes.

• External TINE Server, developed by Desy
institute.

Measurement and Control Interface (MCI)
MCI is the interface of the Platform B instruments

(Libera LLRF, Libera Brilliance+, Libera Single Pass H).
Platform B instruments contain various types of i386-

based embedded computers. These computers run
standard Ubuntu Server edition (Linux kernel 2.6.26 or
2.6.32).

Dynamic nature of Platform B instrument required
different design approach of the software and its API.

MCI has separated classes and functions of the API
from the information that they are used to access. MCI is
networked by design.

The following concepts have been introduced in the
API:

• Registry: tree-structured representation of
information, used to monitor and control
parameters of an instrument.

• The tree nodes are populated by the
instrument software dynamically,
depending on the hardware setup and
type of the instrument

• Nodes can emit notifications (for
example: value change). Callbacks
functions can be registered to nodes to
receive those notifications

• Data Streams
Remote access is provided by
• Directly by MCI
• EPICS adapter: lightweight server without a

database maps MCI registry and signals to
EPICS PVs

• Tango, Tine adapter: will be developed when
needed

Examples
Sample command line tool for reading the Libera unit

environment parameters with CSPI
$ net-libera -i 10.0.0.100 -l
 Temp [C]: 45
 Fans [rpm]: 4590 4560
 Voltages [mV]: 1489 1782 2439 3233 4892 11865 -12020 -5089

Example of source code:
// Connect to the Libera unit at IP address 10.0.0.100
server_connect (“10.0.0.100”, 23271, “224.0.1.240”, 0);
// Allocate the environment handle
cspi_allochandle (CSPI_HANDLE_ENV, 0, henv);
// Prepare variables for environment parameter readout
CSPI_ENVPARAMS params;
CSPI_BITMASK mask = ~(0LL);
// Acquire the parameter
cspi_getenvparam (henv, ¶ms, mask);
// Release the envirnment handle
cspi_freehandle (CSPI_HANDLE_ENV, henv);
// Disconnect from the Libera unit
server_disconnect ();

Structure of MCI registry as presented by a sample
command line tool.
$./libera-ireg dump -h 10.0.3.40 -l 3
IP_10-0-3-40
 boards
 raf5
 chassis:0
 chassis:1
 chassis:2
 chassis:5
 os
$./libera-ireg dump -h 10.0.3.40 -l 3
boards.chassis:1.board_info
board_info
 type = VM
 status = Running
 power_status = Mng + Main
 fpga_revision = 7103
 ipmi_version = 81

Example of source code:
Using namespace mci;
// Connect to instrument 1
RemoteNode h1 = CreateRemoteRootNode("10.0.33.1", 5678,
"libera-platformd");
Node r1(h1);
// Connect to instrument 2
RemoteNode h2 = CreateRemoteRootNode("10.0.33.2", 5678,
"libera-platformd");
Node r2(h2);
// Query specific temperature from ins 1
Node tempNode = r1.GetNode({"boards", "chassis:0", "sensors",
"ID_2" });
float temp = tempNode.GetValue();

REFERENCES
[1] CSPI Reference Guide; Instrumentation Technologies

d.d.; http://www.i-tech.si
[2] MCI Reference Guide; Instrumentation Technologies

d.d.; http://www.i-tech.si
[3] Experimental Physics and Industrial Control System

(EPICS); http://www.aps.anl.gov/epics/
[4] TAco Next Generation Objects (TANGO);

http://www.tango-controls.org/
[5] Intelligent Platform Management Interface;

http://en.wikipedia.org/wiki/Intelligent_Platform_Ma
nagement_Interface

[6] MicroTCA;
http://www.picmg.org/v2internal/resourcepage2.cfm?
id=5

[7] Gstreamer; http://www.gstreamer.net/

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL032

Accelerator Controls Development and application frameworks

93

