
§
Work supported by US DOE Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.

HIGH LEVEL MATLAB APPLICATION PROGRAMS FOR SPEAR3§
J. Corbett et al, SLAC, Stanford, CA 94309

Abstract

The SPEAR3 control system nominally operates with
the EPICS toolbox on top of VMS hardware. The
simultaneous use of Matlab Middlelayer (MML) and
Accelerator Toolbox (AT) allow for parallel, high-level
machine control and accelerator physics applications that
communicate with the control system via EPICS Channel
Access (LabCA). While the majority of the MML and AT
software is machine independent, site-specific high-level
applications are also required to control the accelerator.
This paper describes several such high-level application
programs that have been developed for control and
diagnostics at SPEAR3. Examples include a time-
dependent waveform display gui, beam steering
applications, transport line optics correction, SR beam
diagnostics and add-ons to the main MML routines.

INTRODUCTION
The SPEAR3 light source came as the result of a Basic

Energy Sciences committee recommendation following a
review of U.S. synchrotron radiation facilities in 1997 [1].
Before formal DOE/NIH funding arrived in 1999,
preliminary lattice design and system engineering
specifications were developed on project seed money.
During this time, it became clear that the historical, yet
dated, SPEAR control system would need to be largely
replaced [2], in particular the high-level application
programs. The new system would utilize EPICS operating
on a VMS platform which opened up the possibility for
Channel Access communication with external programs.
In order to consider options for modern application
development platforms, a satellite meeting was arranged
at the 1998 International Computational Accelerator
Physics Conference in Monterey, CA. Presentations
included options for SDDS, TCL/TK and X-Windows
software.

At the time of the Monterey conference, Matlab was
already in use at SSRL for data processing and off-line
accelerator physics calculations. Matlab had also been
used extensively at the SLC for data acquisition, data
reduction and to some degree machine control. At the
ALS in Berkeley, Matlab was in use for command-line
driven machine control and data processing [3], and had
the interesting feature that the top-level language closely
mimicked accelerator simulation programs such as
TRACY [4]. At the same time the first versions of the
Matlab Accelerator Toolbox [5] utilizing TRACY
transport physics were available for simulation studies at
SSRL.

During the Monterey meeting, a proponent of IDL
made an interesting observation – since recent versions of
Matlab contained graphical interface commands why not
use it to develop high-level application programs [6]?

With Channel Access connectivity embedded in Matlab
(LabCA) [7], a complete solution was available with
control system communication, gui capability, user-
friendly data reduction software and accelerator
simulation tools that could be integrated into a single, all-
in-one software package. The gavel fell and a new project
was born – high level application programs at SPEAR3
would be developed and written in Matlab†.

In a stroke of luck, the main author of Matlab Middle
Layer (MML) [8] was finishing work on an SBIR grant at
SLAC and was available to consult with SSRL on
application development for SPEAR3. The first project
was to convert the FORTRAN version of the Linear-
Optics-Closed-Orbit (LOCO) program to Matlab [9]. It
was then recognized that SPEAR3 needed a ‘middle
layer’ to provide easy connectivity between the
accelerator physicist and storage ring. By introducing
Matlab code utilizing accelerator modeling syntax
developed at the ALS, a straight-forward database-drive
system was devised for simulation and control.

As more of the ALS software was integrated into the
system, the functionality of higher-level programs such
as, orbit, tune, dispersion and chromaticity measurement
expanded. In order to retain the ability to pass the new
software back to the ALS, programs were written in a
‘machine independent’ format driven by simple MML
initialization files to associate accelerator elements and
their indices with girder locations, database channel
names, hardware limits, conversion factors and specific
locations within the AT lattice file.

First tests of machine independence were made in trials
at the Canadian Light Source and then again at the ALS.
Interestingly, machine-independence also created a
structural rigor within the software that ultimately
simplified high-level program development and
streamlined switching between on-line and simulation
control modes. Hardware-to-physics conversion factors
also enabled the user to ‘switch’ between hardware (e.g.
amps) and physics (e.g. m-2) units with a single command.
Similarly, the AT lattice pointers automate switching
between on-line and simulation modes with a single
command. File directory specifications were then
incorporated to automate data file look-up and data
storage needs for machine control and simulation.

In the sections to follow we describe high-level
application program developments at SPEAR3 in the
areas of waveform variable display, main ring and
transport line machine tuning and optical diagnostics.

†the philosophy was, and still is, ‘anything that can be

written in EPICS will be written in EPICS’.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL035

Accelerator Controls Operator interface software and human factors

97

 CONTROL/DISPLAY APPLICATIONS
One of the first high-level MML application programs

was a real-time orbit monitor program intended to
compliment a manual orbit control program. It was soon
recognized that the x- and y ‘orbit’ families were only two
instances of a larger class of ‘families’ defined in the
MML initialization files. By simply redefining the
‘family’ and the associated axis coordinates within the
display, a broad selection of accelerator hardware
families could be displayed in the same graphical
interface. ‘PlotOrbit’ was converted into ‘PlotFamily’
including a complete set of options to display data in
terms of absolute or relative values, and with interactive
axis scaling features. By utilizing the built-in functionality
available in the MML, ‘saved’ and ‘golden’ family data
could be easily recalled into the graphical display.

 Figure 1: PlotWaveform graphical interface.

To further expand the PlotFamily interface, callbacks

from main pull-down menus at the top of the display were
programmed to execute other high-level MML code. This
feature gave machine operators the capability to load and
save entire machine configurations, measure and save
machine parameters (dispersion, tune, chromaticity,
LOCO data), and a means to control global accelerator
properties (orbit, tune, etc). Graphical data could also be
exported to the main Matlab workspace for further
processing. The resulting PlotFamily application was
machine-independent and could operate at any accelerator
configured to run MML.

As an extension of the built-in functionality, PlotFamily
has an added file execution option that executes at run
time. This feature is used at SSRL to generate SPEAR3-
specific menu options for transport line control, orbit-
interlock checks, machine-specific diagnostic controls and
links to hardware documentation.

A further development undertaken at SSRL was to
incorporate the PlotFamily display features into a new,
high-level ‘PlotWaveform’ graphical interface. As shown
in Fig. 1, PlotWaveform provides a means to display real-
time EPICS ‘waveform’ variables. Most of the ~50
EPICS waveform variables at SPEAR3 are supplied by
the Pulse Signal Monitor (PSM) system which consists of
a distributed set of analog signal amplifiers and digitizer
boards to monitor pulsed RF data (few μs), fast-kicker
data (few μs) and booster ramp signals (few ms). Similar
to the MML initialization concept, PlotWaveform is based
on a machine-specific initialization file that identifies
common waveform names with Channel Access names,
physical units and time base parameters.

MACHINE CONTROL APPLICATIONS
 An early Matlab application program developed for
SPEAR3 was the SVD-based orbit control interface
‘OrbitGUI’ [10]. The control interface utilized Matlab
graphic features such as select-and-drag for beam position
monitor icons while the underlying software utilized the
MML library to open the corrector-to-bpm response
matrix file, measure the beam orbit and load both RF
frequency and corrector setpoints. The OrbitGUI program
was nearly machine-independent with local specifics
related to the fact that the code pre-dates MML.

 Figure 2. OrbitGUI graphical interface.

The main processing algorithm within OrbitGUI was
then transferred to a slow orbit-correction feedback
application (SOFB), which uses a Matlab timer object as
the internal clock. The SOFB interface is more compact
than the OrbitGUI interface allowing only timer on/off
and RF correction on/off control. The internal SOFB orbit
correction algorithm was updated to allow eigenvector-
by-eigenvector mode discrimination. In this case, at each
correction cycle SOFB calculates the inner product
between the orbit vector and each orbit basis vector in the
linear algebra sense. The correction is only applied if the
inner product exceeds a pre-specified threshold for each
mode. Operationally the discrimination algorithm better
rejects BPM noise and results in a quieter beam orbit at
the user beam lines.

A similar interactive orbit control program was
developed for the linac-to-booster transfer line (LTB). In
this case the response matrix is for ‘open’ as opposed to
‘closed’ beam orbits and the BPM data requires averaging
for accurate results. In order to reliably steer the beam
through the LTB, the initial launch conditions
(x,x’,y,y’,dp) must be measured and held constant to
minimize mis-steering and dispersion generated upstream.
LTBOrbitGUI and the associated response matrix
measurement software utilize MML commands are fully
integrated into the MML file directory system.

For the booster-to-storage ring (BTS) transfer line, a
more complex software system was developed to calibrate
the beam line quadrupole optics using LOCO-style
response matrix calculations [11]. The BTS software also
contains a steering package designed to optimize beam
injection efficiency into SPEAR3 .

The RF bucket select software was originally
implemented in Matlab but then converted into an EPICS
control panel. The conversion was consistent with the
philosophy that straight-forward machine-critical software
should be written in EPICS where possible.

WEPL035 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

98

Operator interface software and human factors

DIAGNOSTIC APPLICATIONS
The Matlab middle layer and Channel Access

connectivity are also utilized for SPEAR3 optical
diagnostics. The x-ray pinhole camera, for instance,
acquires the beam image with a PointGrey CCD Flea
camera [12] routed through IEEE-1394b Firewire to a
standard PC. A software link to the PointGrey camera
control library maps the image into Matlab memory for
processing and display [13]. The Accelerator Toolbox is
used to compute relevant betafunctions at the x-ray beam
source point. In the nominal beam monitoring mode the
measured beam parameters are written to EPICS using
LabCA. During periods of machine development, MML
scripts are used to manipulate electron beam position,
coupling and emittance as measured by the pinhole
camera. A Matlab script developed at the CLS calculates
spectrally-integrated Fresnel diffraction integrals to
characterize beam propagation from source to screen [14].

 Figure 3: PlotWaveform graphical interface.

A similar, more sophisticated application program was

developed for the visible-light interferometer [15]. As
shown in Figure 3, a second Matlab-linked Flea camera
acquires the raw, 2-slit interference pattern and a
graphical interface is used to establish user-defined
boundaries for the line-out. A Levenberg–Marquardt
numerical fitting algorithm written in Matlab [16] applies
a least-squares fit of a sinc/sine function to the
interference data to extract the incoherent beam visibility.
MML is again used to control insertion device parameters,
x-y coupling and emittance for machine characterization.

For the fast-gated and streak cameras, direct links are
not available to the internal camera software so raw
camera images are saved to disk and re-opened in Matlab
for processing. Moments of the transverse and
longitudinal beam distribution are fitted to extract data
relevant to emittance, machine impedance and instability
thresholds. In cases where time-dependent phenomena are
recorded, images are pre-processed and then sequenced
together in Matlab to generate ‘movies’ that display non-
linear features of the beam distribution that are otherwise
difficult to characterize with scalar quantities.

SUMMARY
The Matlab middle layer has provided a relatively user-

friendly software package for machine commissioning,
operation and accelerator development. Key components
include the Accelerator Toolbox, Channel Access
Toolbox and a wide range of accessory tools. High-level
application programs built largely on the MML allow for
scripted data acquisition, data processing and graphical
display that are difficult to implement using standard
accelerator control system software. To date, over a dozen
synchrotron light sources have adopted MML and many
have gone on to develop high-level application programs.
High-level application programs at SPEAR3 include
waveform analysis, beam tuning and orbit control and
optical diagnostics. Another important feature of MML
and high-level application programs is the ability to
provide teaching tools for students and interns.

REFERENCES
[1] R. Birgeneau, et al, ‘BESAC Advisory Committee
Panel on D.O.E. Synchrotron Radiation Sources and
Science’, November 1997.
[2] H. Rarback. et al, ‘Old Wine in New Bottles-The
SPEAR Control System Upgrade’, ICALEPCS’99,
October 4-8, Trieste, Italy, 1999.
[3] G. Portmann, ‘ALS Storage Ring Setup and Control
Using MATLAB’, LBL LSAP Note #248, June 1998.
[4] H. Nishimura, ‘TRACY, A Tool for Accelerator
Design and Analysis’, EPAC’88, Rome, Italy, 1988.
[5] A. Terebilo, ‘Accelerator Modeling with MATLAB
Accelerator Toolbox’, PAC’01, May 2002.
[6] Harvey Rarback, private communication.
[7] A. Terebilo, ‘Channel Access Toolbox for MATLAB’,
ICALEPCS’01, San Jose, CA, 2001.
[8] G. Portmann and J. Corbett, ‘An Accelerator Control
MiddleLayer Using Matlab, PCaPAC’05, Hayama, Japan.
[9] J. Safranek, et al, ‘Linear Optic Correction Algorithm
in MATLAB’, PAC’03, Portland, Oregon, 2003.
[10] J. Corbett, ‘Orbit Control Using MATLAB’,
PAC’01, Chicago, Illinois, 2002,
[11] J. Safranek, et al, ‘Optimization of the Booster to
SPEAR Transport Line for Top-Off Injection’, PAC’09,
Vancouver, Canada, 2009.
[12] http://www.ptgrey.com/products/flea2/index.asp
[13] Henrik Loos, LCLS, private communication.
[14] Jack Bergstrom, CLS, private communication.
[15] J. Corbett, et al, ‘Interferometer Beam Size
Measurements in SPEAR3’, PAC’09, Vancouver,
Canada, 2009.
[16] Xiaobiao Huang, SSRL, private communication.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL035

Accelerator Controls Operator interface software and human factors

99

