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Abstract 

The SPEAR3 control system nominally operates with 
the EPICS toolbox on top of VMS hardware. The 
simultaneous use of Matlab Middlelayer (MML) and 
Accelerator Toolbox (AT) allow for parallel, high-level 
machine control and accelerator physics applications that 
communicate with the control system via EPICS Channel 
Access (LabCA). While the majority of the MML and AT 
software is machine independent, site-specific high-level 
applications are also required to control the accelerator. 
This paper describes several such high-level application 
programs that have been developed for control and 
diagnostics at SPEAR3. Examples include a time-
dependent waveform display gui, beam steering 
applications, transport line optics correction, SR beam 
diagnostics and add-ons to the main MML routines. 

INTRODUCTION 
The SPEAR3 light source came as the result of a Basic 

Energy Sciences committee recommendation following a 
review of U.S. synchrotron radiation facilities in 1997 [1]. 
Before formal DOE/NIH funding arrived in 1999, 
preliminary lattice design and system engineering 
specifications were developed on project seed money. 
During this time, it became clear that the historical, yet 
dated, SPEAR control system would need to be largely 
replaced [2], in particular the high-level application 
programs. The new system would utilize EPICS operating 
on a VMS platform which opened up the possibility for 
Channel Access communication with external programs. 
In order to consider options for modern application 
development platforms, a satellite meeting was arranged 
at the 1998 International Computational Accelerator 
Physics Conference in Monterey, CA. Presentations 
included options for SDDS, TCL/TK and X-Windows 
software.  

At the time of the Monterey conference, Matlab was 
already in use at SSRL for data processing and off-line 
accelerator physics calculations. Matlab had also been 
used extensively at the SLC for data acquisition, data 
reduction and to some degree machine control. At the 
ALS in Berkeley, Matlab was in use for command-line 
driven machine control and data processing [3], and had 
the interesting feature that the top-level language closely 
mimicked accelerator simulation programs such as 
TRACY [4]. At the same time the first versions of the 
Matlab Accelerator Toolbox [5] utilizing TRACY 
transport physics were available for simulation studies at 
SSRL. 

During the Monterey meeting, a proponent of IDL 
made an interesting observation – since recent versions of 
Matlab contained graphical interface commands why not 
use it to develop high-level application programs [6]?  

 
With Channel Access connectivity embedded in Matlab 
(LabCA) [7], a complete solution was available with 
control system communication, gui capability, user-
friendly data reduction software and accelerator 
simulation tools that  could be integrated into a single, all-
in-one software package. The gavel fell and a new project 
was born – high level application programs at SPEAR3 
would be developed and written in Matlab†. 

In a stroke of luck, the main author of Matlab Middle 
Layer (MML) [8] was finishing work on an SBIR grant at 
SLAC and was available to consult with SSRL on 
application development for SPEAR3. The first project 
was to convert the FORTRAN version of the Linear-
Optics-Closed-Orbit (LOCO) program to Matlab [9]. It 
was then recognized that SPEAR3 needed a ‘middle 
layer’ to provide easy connectivity between the 
accelerator physicist and storage ring. By introducing 
Matlab code utilizing accelerator modeling syntax 
developed at the ALS, a straight-forward database-drive 
system was devised for simulation and control.  

As more of the ALS software was integrated into the 
system, the functionality of higher-level programs such 
as, orbit, tune, dispersion and chromaticity measurement 
expanded. In order to retain the ability to pass the new 
software back to the ALS, programs were written in a 
‘machine independent’ format driven by simple MML 
initialization files to associate accelerator elements and 
their indices with girder locations, database channel 
names, hardware limits, conversion factors and specific 
locations within the AT lattice file.  

First tests of machine independence were made in trials 
at the Canadian Light Source and then again at the ALS. 
Interestingly, machine-independence also created a 
structural rigor within the software that ultimately 
simplified high-level program development and 
streamlined switching between on-line and simulation 
control modes. Hardware-to-physics conversion factors 
also  enabled the user to ‘switch’ between hardware (e.g. 
amps) and physics (e.g. m-2) units with a single command. 
Similarly, the AT lattice pointers automate switching 
between on-line and simulation modes with a single 
command. File directory specifications were then 
incorporated to automate data file look-up and data 
storage needs for machine control and simulation.  

In the sections to follow we describe high-level 
application program developments at SPEAR3 in the 
areas of waveform variable display, main ring and 
transport line machine tuning and optical diagnostics. 

 
 
†the philosophy was, and still is, ‘anything that can be 

written in EPICS will be written in EPICS’.  
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 CONTROL/DISPLAY APPLICATIONS 
One of the first high-level MML application programs 

was a real-time orbit monitor program intended to 
compliment a manual orbit control program. It was soon 
recognized that the x- and y ‘orbit’ families were only two 
instances of a larger class of ‘families’ defined in the 
MML initialization files. By simply redefining the 
‘family’ and the associated axis coordinates within the 
display, a broad selection of  accelerator hardware 
families could be displayed in the same graphical 
interface. ‘PlotOrbit’ was converted into ‘PlotFamily’ 
including a complete set of options to display data in 
terms of absolute or relative values, and with interactive 
axis scaling features. By utilizing the built-in functionality 
available in the MML, ‘saved’ and ‘golden’ family data 
could be easily recalled into the graphical display.   

 

     
  Figure 1: PlotWaveform graphical interface. 
 
To further expand the PlotFamily interface, callbacks 

from main pull-down menus at the top of the display were 
programmed to execute other high-level MML code. This 
feature gave machine operators the capability to load and 
save entire machine configurations, measure and save 
machine parameters (dispersion, tune, chromaticity, 
LOCO data), and a means to control global accelerator 
properties (orbit, tune, etc). Graphical data could also be 
exported to the main Matlab workspace for further 
processing. The resulting PlotFamily application was 
machine-independent and could operate at any accelerator 
configured to run MML. 

As an extension of the built-in functionality, PlotFamily 
has an added file execution option that executes at run 
time. This feature is used at SSRL to generate SPEAR3-
specific menu options for transport line control, orbit-
interlock checks, machine-specific diagnostic controls and 
links to hardware documentation. 

A further development undertaken at SSRL was to 
incorporate the PlotFamily display features into a new, 
high-level ‘PlotWaveform’ graphical interface. As shown 
in Fig. 1, PlotWaveform provides a means to display real-
time EPICS ‘waveform’ variables. Most of the ~50 
EPICS waveform variables at SPEAR3 are supplied by 
the Pulse Signal Monitor (PSM) system which consists of 
a distributed set of analog signal amplifiers and digitizer 
boards to monitor pulsed RF data (few μs), fast-kicker 
data (few μs) and booster ramp signals (few ms). Similar 
to the MML initialization concept, PlotWaveform is based 
on a machine-specific initialization file that identifies 
common waveform names with Channel Access names, 
physical units and time base parameters.   

MACHINE CONTROL APPLICATIONS 
    An early Matlab application program developed for 
SPEAR3 was the SVD-based orbit control interface 
‘OrbitGUI’ [10]. The control interface utilized Matlab 
graphic features such as select-and-drag for beam position 
monitor icons while the underlying software utilized the 
MML library to open the corrector-to-bpm response 
matrix file, measure the beam orbit and load both RF 
frequency and corrector setpoints. The OrbitGUI program 
was nearly machine-independent with local specifics 
related to the fact that the code pre-dates MML. 
 

        
        Figure 2. OrbitGUI graphical interface. 
 

The main processing algorithm within OrbitGUI was 
then transferred to a slow orbit-correction feedback 
application (SOFB), which uses a Matlab timer object as 
the internal clock. The SOFB interface is more compact 
than the OrbitGUI interface allowing only timer on/off 
and RF correction on/off control. The internal SOFB orbit 
correction algorithm was updated to allow eigenvector-
by-eigenvector mode discrimination. In this case, at each 
correction cycle SOFB calculates the inner product 
between the orbit vector and each orbit basis vector in the 
linear algebra sense. The correction is only applied if the 
inner product exceeds a pre-specified threshold for each 
mode. Operationally the discrimination algorithm better 
rejects BPM noise and results in a quieter beam orbit at 
the user beam lines. 

A similar interactive orbit control program was 
developed for the linac-to-booster transfer line (LTB). In 
this case the response matrix is for ‘open’ as opposed to 
‘closed’ beam orbits and the BPM data requires averaging 
for accurate results. In order to reliably steer the beam 
through the LTB, the initial launch conditions 
(x,x’,y,y’,dp) must be measured and held constant to 
minimize mis-steering and dispersion generated upstream. 
LTBOrbitGUI and the associated response matrix 
measurement software utilize MML commands are fully 
integrated into the MML file directory system. 

For the booster-to-storage ring (BTS) transfer line, a 
more complex software system was developed to calibrate 
the beam line quadrupole optics using LOCO-style 
response matrix calculations [11]. The BTS software also 
contains a steering package designed to optimize beam 
injection efficiency into SPEAR3 . 

The RF bucket select software was originally 
implemented in Matlab but then converted into an EPICS 
control panel. The conversion was consistent with the 
philosophy that straight-forward machine-critical software 
should be written in EPICS where possible. 
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DIAGNOSTIC APPLICATIONS  
The Matlab middle layer and Channel Access 

connectivity are also utilized for SPEAR3 optical 
diagnostics. The x-ray pinhole camera, for instance, 
acquires the beam image with a PointGrey CCD Flea 
camera [12] routed through IEEE-1394b Firewire to a 
standard PC. A software link to the PointGrey camera 
control library maps the image into Matlab memory for 
processing and display [13]. The Accelerator Toolbox is 
used to compute relevant betafunctions at the x-ray beam 
source point. In the nominal beam monitoring mode the 
measured beam parameters are written to EPICS using 
LabCA. During periods of machine development, MML 
scripts are used to manipulate electron beam position, 
coupling and emittance as measured by the pinhole 
camera. A Matlab script developed at the CLS calculates 
spectrally-integrated Fresnel diffraction integrals to 
characterize beam propagation from source to screen [14]. 

 

     
  Figure 3: PlotWaveform graphical interface. 
 
A similar, more sophisticated application program was 

developed for the visible-light interferometer [15]. As 
shown in Figure 3, a second Matlab-linked Flea camera 
acquires the raw, 2-slit interference pattern and a 
graphical interface is used to establish user-defined 
boundaries for the line-out. A Levenberg–Marquardt 
numerical fitting algorithm written in Matlab [16] applies 
a least-squares fit of a sinc/sine function to the 
interference data to extract the incoherent beam visibility. 
MML is again used to control insertion device parameters, 
x-y coupling and emittance for machine characterization. 

For the fast-gated and streak cameras, direct links are 
not available to the internal camera software so raw 
camera images are saved to disk and re-opened in Matlab 
for processing. Moments of the transverse and 
longitudinal beam distribution are fitted to extract data 
relevant to emittance, machine impedance and instability 
thresholds. In cases where time-dependent phenomena are 
recorded, images are pre-processed and then sequenced 
together in Matlab to generate ‘movies’ that display non-
linear features of the beam distribution that are otherwise 
difficult to characterize with scalar quantities. 

 
 
 
 
 

SUMMARY 
The Matlab middle layer has provided a relatively user-

friendly software package for machine commissioning, 
operation and accelerator development. Key components 
include the Accelerator Toolbox, Channel Access 
Toolbox and a wide range of accessory tools. High-level 
application programs built largely on the MML allow for 
scripted data acquisition, data processing and graphical 
display that are difficult to implement using standard 
accelerator control system software. To date, over a dozen 
synchrotron light sources have adopted MML and many 
have gone on to develop high-level application programs. 
High-level application programs at SPEAR3 include 
waveform analysis, beam tuning and orbit control and 
optical diagnostics. Another important feature of MML 
and high-level application programs is the ability to 
provide teaching tools for students and interns. 
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