
A NOVEL APPROACH FOR BEAM COMMISSIONING SOFTWARE USING
SERVICE ORIENTED ARCHITECTURE*

G. Shen, BNL, Upton, NY 11973, U.S.A.
P. Chu, J. Wu, SLAC, Menlo Park, CA 94025, U.S.A.

Abstract
A novel software framework is under development,

which is for accelerator beam commissioning and
operation. It adopts a client/server based architecture to
replace the more traditional monolithic high level
application approach. A minimum set of commissioning
and operational services has been defined such as
simulation server service, directory service, magnet
service, and bpm service, etc. Most of them have been
prototyped. Services can use EPICS pvData as its data
container and pvAccess as communication protocol. This
paper describes conceptual design and latest progress for
some services.

INTRODUCTION
Traditionally, an accelerator application needs to deal

with many functions such as connection to various
signals, data from physics modelling, data plotting,
complicated program flow and error handling. If all such
computation is built in a single standalone program, the
complexity level of the program may result poor
performance, unreliability and code maintenance
difficulty. Also, if any application needs a new feature
which is not provided by an easy interface, it is hard to
implement the feature without major restructure of the
existing program.

On the other hand, if heavy computation functions can
be distributed as running modules residing on various
servers and serving up data via proper service protocol,
the Graphical User Interface (GUI) application itself can
be a simple thin client receiving the data from the servers.
This service oriented architecture (SOA) approach can in
general improve both performance and reliability of
applications.

In this paper, some preliminary result for simulation or
model service, Linac energy management (LEM) service
and possible communication protocols such as EPICS
pvAccess are reported. Work plan for the SOA is also
described.

SERVICE ORIENTED ARCHITECTURE
One can identify some essential services for accelerator

operation by surveying the functionalities of existing
applications. The granularity of services depends on
functionality shared by clients, performance, robustness
coding complexity, and maintenance. On one hand, too
narrow of a service means many more services in total
and could cause maintenance trouble. On the other hand,
a single service providing too many functions could

reduce its performance and reliability. Figure 1 shows a
typical top level SOA diagram with a few services.

Furthermore, services can be distributed to multiple
servers with virtual machines technology. A distributed
system can avoid one service bringing down others. One
can also add a redundant server for any critical services.

Advantages for SOA approach are described in detail
below.

Easy Application Development
Coding an application with many functions can be

tedious. On the other hand, some functions can be shared
by several applications. A well-designed SOA approach
can greatly reduce the burden on end developers.
Applications can then become “thin” clients without
much inline computation. Only simple “get/set” data
communication with the service providers will be needed.
Coding up a complicated application such as controlling
an experiment will require much less time and effort.
Yet, all the high quality of supporting functionality is
fulfilled because the complication is maintained on the
server side. This means that even a program written in
scripting language such as Matlab script can still have the
same high quality of error handling and message logging
without additional coding efforts.

Data Control
Because the services are centralized control, i.e.

typically only one particular service instance running at a
time. This approach can avoid conflict among multiple
clients accessing the same device; for instance, feedback
and Linac Energy Management (LEM) program might
change the same corrector at the same time but magnet
server can shedule the two requests properly.

Better Application Memory Management
For individual applications, SOA can avoid large

memory and CPU consumption due to heavy computation
and data process. Therefore, it can also reduce the chance
of client application program crashing.

Service Swappable
It is not necessary to replace all traditional functions

with services overnight. One can implement a service at a
time. If an old service is replaced by a new one, the
application programming interface (API) should remain
the same so the client application can pick up the service
seeminglessly. This also means the SOA work is highly
scalable depending on the available resources.
Furthermore, a new service should go through rigorus test
before any client application in production can actually
use it.

*Work supported under auspices of the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886 with Brookhaven Science
Associates, LLC, and in part by the DOE Contract DE-AC02-
76SF00515

WEPL037 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

100

Development and application frameworks

SERVICE EXAMPLES

Simulation (Model) Service
Running model within an application is one of the most

expensive operations in terms of CPU and memory use.
Simulation or model service runs physics model
periodically and makes up-to-date model data available
for any subscribed clients.

The model server can be expended to cover not only
online modelling but also other beam dynamics modelling
such as start-to-end simulation, which can provide more
detailed beam dynamics simulation information, with a
set of uniform APIs. Various simulation codes can be run
continuously to supply data to the model server with
extant hardware set values.

Figure 2 shows a schematic diagram for the Simulation
Service. The core part of the service is a model run
control program which manages input data and file
preparation, job submission, run status monitoring, run
forced quit and output data management.

A prototyped run control program with Fortran based
IMPACT-T [1] modelling code using Java and Python
has been written and under test. Java part of the program
is mainly for data display such as tables and plots while
Python is excellent for file I/O and communication with
the modelling code and the underneath operating system.
The run control program dynamically generates a set of
IMPACT-T input files based on user’s input via GUI. For
each run, a new directory named with the run start time is
created and all files are saved under the directory.

Figure 2: Data flow for model engine and service.

Linac Energy Management (LEM) Service
Any linear accelerator can change its energy from time

to time. In order to maintain the same lattice all the time,
a program so called LEM which continuously updates the
energy information has to run regularly. LEM requires
RF data and model tracking; therefore, it is most efficient
that it is running periodically on a server and updating all
data for clients such as LEM application and control room
continuous update display (CUD).

Figure 1: Top level SOA functional diagram. The arrow direction shown in the figure indicates the data flow direction.
For instance, Model Service can provide model data to Linac Energy Management (LEM) Service.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL037

Accelerator Controls Development and application frameworks

101

A prototype LEM Service posting calculation result on
EPICS Process Variables (PV) has been implemented.
Preliminary result shows that the service has been running
for over a month even with the accelerator itself being up
and down. In contrast, the standalone version of the LEM
program crashes easily due to various causes such as data
acquisition failure, memory management issue and so on.

Directory Service
This service is prototyped under a sourceforge project

so-called epics-pvdata [3,4]. The epics-pvdata consists of
4 modules: (1) pvData, which defines and implements an
efficient way to store, access, and transmit memory
resident structured data; (2) pvAccess, which is a new
generation of EPICS Channel Access protocol. It is used
to deliver data over the network and fully supports
pvData, and depends only on module pvData; (3)
javaIOC, which is a processing engine. All behaviours are
defined by JavaIOC engine, and user has only to develop
his own support for all desired behaviours. It depends on
the pvData and pvAccess; (4) pvService, which is a
combination of all services under this project. All generic
services or facility specified services should locate here.

The Directory Service, so-called itemFinder, is one
particular example under pvService module. It provides a
basic function to get a list of physics elements and its
associated properties such as EPICS PV names for read-
back, set-point, temperature, and so on if they apply. It is
designed and prototyped against MySQL relational
database (RDB). The RDB schema consists of two (2)
tables: (1) item table, which stores the physics names for
all elements installed in a facility; (2) property table,
which stores all properties associated with each element.

A client application gives search criteria by calling a
client API. The search command is passed to a daemon
record and the record is processed inside the JavaIOC,
and a RDB query is performed to get an item name list
with properties, which satisfied the search constrains. The
value is returned back to the client through a dynamically
created pvRecord.

One use case of this service is to get a list of EPICS
channel names. Since a channel name is an entry of
properties for an element, by getting the list back to
client, user can retrieve the element’s channel names
easily.

Gather Service
The Gather Service is another service under pvService

module. Basic idea of this service is that a client sends a
PV list with a string to this service; the service then
creates a pvRecord dynamically with the string name
given by the client.

Here we have to mention that the type of each PV in the
PV list should have same data type, and pvService does
not check it. Also the client has to make sure that name
string is unique and did not exist in the Gather Service.
Otherwise, it will use existing pvRecord instead of
creating a new one. This has to be improved later.

After a client ships a PV list to the gather service, the
gather service creates a pvRecord as mentioned above,
and connects to low level hardware IOCs for example
BPM IOCs, and update its value every time a PV in a low
level IOC changes.

Client can customize the Gather as desired service such
as a BPM orbit server, or a magnet server.

COMMUNICATION PROTOCOL
An adequate communication protocol is indispensable

for SOA architecture. There are many protocols available
such as HTTP, XML-RPC and so on. A new generation
of EPICS Channel Access protocol, pvAccess, is a better
option to deliver accelerator data over the network. The
main advantages are as below:

 It fully supports pvData, and depends only on
project pvData. We can integrate our servers
seamlessly with pvData.

 It is developed against current Channel Access,
and inherits the advantages of EPICS Channel
Access. For example, it is data stream oriented
protocol, and can be expected to have good
performance for an accelerator control system.

The performance benchmarking is undergoing, and a
preliminary result shows a good performance. For
example, on a local office network, when we feed 1000
PVs to the Gather Service, it can update the 1000 PVs’
value with a frequency large than 100Hz.

PLAN
Some service such as Simulation Service, itemFinder,

and gather service are being prototyped. They all are in
the stage of choosing a good communication protocol for
production and EPICS pvAccess shows a good
performance as communication protocol. Some more
development and benchmarking are necessary for a
production server.

ACKNOWLEDGEMENT
The authors would like to thank Matej Sekoranja at

COSYLAB and Marty Kraimer for their contributions on
epics-pvdata development. They also want express their
thanks to Ji Qiang at LBNL for providing IMPACT-T
code. They want to give their thanks to Leo Dalesio at
BNL for his continuous support and encouragement.

REFERENCES
[1] J. Qiang, S. Lidia, R. D. Ryne, and C. Limborg-

Deprey, “A Three-Dimensional Quasi-Static Model
for High Brightness Beam Dynamics simulation”,
Phys. Rev. ST Accel. Beams 9, 044204 (2006).

[2] P. Chu et al, “Generic Model Host System Design”,
Proc. of IPAC10, TUPEC071

[3] G. Shen et al, “Design of Accelerator Online
Simulator Server Using Structured Data”, Proc. of
IPAC10, WEPEB024

[4] http://sourceforge.net/projects/epics-pvdata/

WEPL037 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

102

Development and application frameworks

