
DEVELOPMENT AND PERFORMANCE ANALYSIS OF EPICS CHANNEL
ACCESS SERVER ON FPGA BASED SOFT-CORE PROCESSOR

 S. Sahoo#, T. Bhattacharjee, S. Pal, VECC, Kolkata, India

Abstract

 A soft core processor is a flexible hardware description
language (HDL) model of a specific processor (CPU) that
can be customized for a given application and synthesized
for an FPGA as opposed to a hard core processor which is
fixed in silicon. Combined with an on board ethernet
port, the technology incorporates integrating the IOC and
digital control hardware within a single FPGA thus
reducing the overall hardware complexities of field
devices. In this paper, the technical details of porting
EPICS Channel Access Server on MicroBlaze soft-core
processor are explained. The EPICS performance on the
MicroBlaze processor is analyzed. For this, the CPU load
and server processing time for different numbers of
Process Variables (PVs) have been studied for this
platform. On the basis of the analysis, critical parameters
of EPICS on this embedded platform have been derived
and a few modifications in the channel access protocol are
proposed for MicroBlaze soft-core processor.

INTRODUCTION
 Experimental Physics and Industrial Control System

(EPICS) has been used in many accelerator laboratories to
design the control system of accelerator under a unified
architecture for better reliability, integrity and security of
the overall control system of an accelerator.

The Input Output Controller (IOC) is the heart of an
EPICS distributed control system and many such IOCs
can be distributed over the control network. These IOCs
are generally loaded in Personal Computers (PCs) running
windows or linux operating system and placed near the
field devices. Nowadays, the PC-based EPICS IOC is
used in many laboratories, but it has many maintainability
issues.

A soft core processor is a flexible CPU architecture that
is configured in the FPGA as opposed to a hard core
processor which is fixed in silicon. Combined with an
on-board Ethernet port, the technology incorporates the
IOC and digital control hardware within a single FPGA
[1]. Nios II (by Altera), MicroBlaze (by Xilinx),
OpenRISC 1200 (by OpenCores.org), LatticeMicro32
(by Lattice Semiconductors) and Cortex-M1 (by ARM
Limited) are some of the soft-core processors that are
targeted mainly for FPGA implementation. On the basis
of various features like portability of Linux operating
system, availability of FPU (Floating Point Unit) and
MMU (Memory management Unit) and number of logic
elements occupied, it has been seen that MicroBlaze

processor core is the most optimized target soft-core
processor for our application. The use of MicroBlaze
processor and the uC-linux operating system has been
very successful to date [2]. Also placing the processor and
the user-defined hardware on the same device does offer
many benefits and better reflects the state-of-the-art in
systems-on-chip [3]. Our 62.5 MHz MicroBlaze provides
a great deal of processing power, the Spartan-3A FPGA
provides the capability to implement a significant amount
of user-logic, and the uC-linux operating system provides
a good platform for software development and debugging.

The scope of this paper includes porting EPICS on
FPGA based MicroBlaze soft-core processor and analyze
the EPICS record processing and channel access
performance on it. To achieve this, broad steps which are
necessary to be performed are described in the subsequent
sections.

BUILDING MICROBLAZE PROCESSOR

We have used mainly Xilinx Platform studio for
building the MicroBlaze system [4] (i.e. the processor
along with the peripherals and interconnects). Figure1 is
the basic flow diagram representing the steps involved in
building a MicroBlaze system that has been customized
as per requirements in our case.

Figure 1: Flow Diagram for Building MicroBlaze System.

ssahoo@vecc.gov.in

FRCC03 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

274C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software and Hardware Technology

PORTING LINUX ON MICROBLAZE
The uC-linux 2.6 has been ported [5] on the

MicroBlaze system built for our purpose. The original
uC-linux was a derivative of Linux 2.0 kernel intended
for microprocessor based systems without a Memory
Management Unit (MMU). Though the present version of
uC-linux 2.6 also supports MMUs, however, in our
system we have implemented it without an MMU. Figure
2 describes broadly the steps followed by us for the
porting of linux kernel on the MicroBlaze soft-core
processor.

PORTING EPICS ON MICROBLAZE

Portable Channel Access Server was cross compiled
manually for MicroBlaze architecture. Successful testing
was performed on Xilinx Spartan-3A DSP 1800
evaluation board. It was found that following are the steps
need to be followed for porting channel access server on
MicroBlaze.

Building GNU Cross Compiler Tool-chain for
MicroBlaze-uC-linux Platform

 Xilinx MicroBlaze GNU tools source package was
built which includes binutils-2.16, gcc-4.1.2, gdb-6.5 and
newlib-1.14.0.

Building the Necessary Library Packages for
MicroBlaze-uC-linux Platform

The libCom, libca, libcas, libgdd and librt libraries
were needed to be built in addition to prebuilt libraries in
the compiler tool-chain.

Compiling the Portable Channel Access Source-
codes Using MicroBlaze-uC-linux Tool-chain

 Portable Channel Access source codes provided in
makeBaseApp are compiled using a suitable makefile,
created manually.

Building the uC-linux Kernel Image Along with
Server Application

The server application created above is included in the
kernel image of uC-linux 2.6.

Downloading the Kernel Image into FPGA
The resultant kernel image is downloaded to the

configuration flash memory of the FPGA board.

Table 1: List of MicroBlaze Configurations

Configuration Pipelining I-Cache D-Cache

Conf. 1 3 Stage 2 kB 2 kB

Conf. 2 3 Stage 8 kB 8 kB

Conf. 3 5 Stage 2 kB 2 kB

Conf. 4 5 Stage 8 kB 8 kB

Figure 2: Flow Diagram for porting uC-linux.

PERFORMANCE ANALYSIS OF EPICS

We have calculated mainly two parameters while doing
the performance analysis of Channel Access Server on
MicroBlaze processor [6].

1. Server CPU Load: This is percentage utilization of
CPU resource at the server end while servicing to the
client requests.

2. Server Processing Time: Time required by the
server to accept the client requests, process them and
publish them back to the client.

The Channel Access Protocol [7] is consisting broadly
of four steps viz. Channel Connect, Put, Get and free. The
individual Server CPU load and processing time for each
of these steps are measured for MicroBlaze and compared
to ARM9 processor which has a similar architecture of
MicroBlaze but having a fixed-core that lacks the facility
of changing the processor architecture and peripherals
unlike soft-core processors. For each processor type, the
maximum number of PVs in the database is calculated
from the Server Processing Time and safe limit of number
of PVs is estimated from the CPU load parameter. Since
MicroBlaze processor is fully customizable soft-core
target, so four different configurations are built and tested
in order to optimize the results. The four configurations
are listed in Table 1.

Figure 3 and 4 shows the graph of CPU Load (in %) to
number of PV requests at the server machine for ARM9
and MicroBlaze processor (Configuration 4) respectively.
For the other configurations of MicroBlaze processor we
have got similar results.

Proceedings of PCaPAC2012, Kolkata, India FRCC03

Software and Hardware Technology

ISBN 978-3-95450-124-3

275 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 3: CPU load in ARM9.

Figure 4: CPU load in MicroBlaze (Conf. 4).

Figure 5 and 6 shows the server processing time per PV
for channel access get and put on different platforms. As
expected with higher cache memory and greater number
of stages of pipelining the performance of the MicroBlaze
processor is enhanced. But the ARM9 processor is almost
twice as fast as MicroBlaze (8 kB cache and 5 stage
pipelining). The probable reasons for this are as follows:

1. No memory management unit in MicroBlaze
processor.

2. Fork is not supported.
3. Higher processor speed (200 MHz for ARM9

processor and 62.5 MHz for MicroBlaze Processor).

Figure 5: Server processing time per PV for CA_Put.

Figure 6: Server processing time per PV for CA_Get.

From the server processing time per PV graph, we have
calculated the maximum number of PVs that are allowed
in the server database. Results are calculated for three
different scan periods of PVs viz. 0.1, 1 and 10 seconds
and listed in Table 2. These values are estimated
considering only Channel Access Get. Also we have
estimated a safe limit of PVs from Figure 3 and 4 which
determines the number of PV requests from client up to
which the server can process without overloading itself.

Table 2: Results for Maximum Number of PVs at
Different Scan Rate and Safe lLimit of PVs

Config. Max. PV
Limit(0.1s)

Max. PV
Limit (1s)

Max. PV
Limit (10s)

Safe PV
Limit

Conf. 1 80 1200 12000 2500

Conf. 2 80 2000 20000 3000

Conf. 3 80 1300 13000 2500

Conf. 4 80 2200 22000 4000

ARM9 400 4000 40000 5000

SOME ABNORMAL BEHAVIOURS IN

LOWER RANGE OF PVS

Figure 7, 8 and 9 shows the graph between processing
time per PV vs. No. of PVs in Channel Connect, Put and
Get respectively. The graphs show the detailed trend of
curve in lower range of PVs (i.e. between 1 to 1000). In
all the three graphs we see that a sudden rise in server
processing time per PV takes place at different number of
PVs for MicroBlaze processors. Only configuration 1 and
4 are shown here but similar nature is obtained for all the
MicroBlaze configurations. For Channel Connect there is
a sharp rise in server processing time per PV when the
number of PV requests crosses 430. Similar peaks can be
seen at 60 and 100 for Channel Put and Get respectively.
It can be noted that for the ARM9 processor such peaks
are not seen.

FRCC03 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

276C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software and Hardware Technology

Figure 7: CA_Connect in MicroBlaze.

Figure 8: CA_Put in MicroBlaze.

Figure 9: CA_Get in MicroBlaze.

After analyzing the reason behind these peaks, it has
been found that repetitive retransmission of TCP
segments of the TCP/IP stack is taking place while
communication with MicroBlaze processor. This is
making per PV transaction time nondeterministic in a
congestion free network channel, hence the soft real time
response of EPICS channel access is being violated which
is normally achieved in a network with 30% load,
possibly with minimum or no collision domain in the
network design by intelligent network switches.

Figure 10: Wireshark screenshot for TCP communication
with MicroBlaze Server.

It has been seen that in MicroBlaze Processor due to
limited memory resources and lack of memory
management unit and a known bug in soft_irq process, a
few data packets are often lost which triggers the
retransmission in the client socket. This phenomenon is
totally unreliable as it depends on the non-deterministic
transmission delay of packets with adaptive
retransmission algorithm. In the case of less number of
PV requests there is no retransmission taking place
because only one TCP data packet (1448 Bytes) is enough
and as soon as multiple TCP packets are sent,
retransmission is happening due to the inability of
multiple data packet handling of the MicroBlaze
processor. The repetitive retransmission enables the
retransmission algorithm to increase the retransmission
timeout. Moreover, in some cases Nagles algorithm
comes into picture which tries to increase the packet size
in order to compensate the time loss. This worsens the
situation because the server (MicroBlaze) is not capable
of handling bigger data packets which again causes
retransmission. This phenomenon deteriorates the overall
network performance.

PROPOSED IMPROVEMENT

Looking into the above scenario of retransmission a
solution can be proposed which will be effective for any
embedded system lacking the hardware resource which
causes non-deterministic network communication with
EPICS channel access protocol.

Figure 11: General Message Header in Channel Access.

Proceedings of PCaPAC2012, Kolkata, India FRCC03

Software and Hardware Technology

ISBN 978-3-95450-124-3

277 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

In the EPICS channel access a technique, the concept of
message buffering is introduced which increases the
efficiency of the channel by grouping individual messages
in a single message segment. In congestion free network
where repetitive retransmission is a common phenomenon
due to the inefficiency of handling multiple TCP packets
by the server socket, this message buffering concept is a
bottleneck. It can be straight way proposed for the
MicroBlaze processor that the optimized channel access
performance would be with the message buffer size equal
to 1448 with BSD socket (derived from wireshark
results). Nonetheless, considering this retransmission
phenomena in other embedded systems lacking resources,
we can think of an adaptive message buffering algorithm
in channel access to change the payload size dynamically
during the initial connection with server or on notification
from the server which can be described as follows:

 Start with a fixed payload size (say Payload Original)
for channel access message buffer.

 If retransmissions are detected in the media, reduce
the payload size to half of its previous value.

 i.e. Payload New = Payload Original / 2
 Detect for any retransmission in the media. If

retransmission is detected reduce the payload size
further by half of its previous value.

 Thus after N iterations when there is no
retransmission in the media, the final payload size
becomes

 Payload Final = Payload Original / 2N

 N =

PayloadFinal is the optimum payload size for message
buffer in channel access for no retransmission.

This algorithm has to be embedded with the general
message buffering available in channel access as the same
client may connect a IOC server where the performance is
better with the general message buffer and hence the
additional logic in the embedded server should be defined
to notify the client that it needs the proposed adaptive
message buffering algorithm to establish connection.

CONCLUSION

In this project we have successfully ported EPICS
channel access server on MicroBlaze soft-core processor.
To understand the suitability of embedded systems in
real-time environment, EPICS channel access and record
processing performances have been analyzed for
MicroBlaze platform and the results are compared with
standard ARM9. The CPU load and server processing
time for different numbers of client requests have been
studied. Maximum number of PV limit in a server
database is calculated for both Microblaze and ARM9
server machine. The performance in MicroBlaze soft-core
processor can be considerably improved by suitably
tuning the processor architecture (like size of cache
memory and number of stages of pipelining). Another
improvement being proposed for embedded system is the
change in message buffer size of EPICS channel access

which quite frequently causes retransmission and thus
degrading the real-time performance of the system.

REFERENCES
[1] D. Curry, A. Hofler, H. Dong, T. Allison, C. Hovater, K.

Mahoney,“Implementation of an EPICS IOC on an
Embedded Soft Core Processor Using Field Programmable
Gate Arrays”, Proceedings of 10th ICALEPCS, Geneva,
2005.

[2] J.G. Tong, Ian D.L. Anderson, Md. A. S. Khalid, “Soft-
Core Processors for Embedded Systems”, Proceedings of
18th International Conference on Microelectronics (ICM),
2006.

[3] R. H. Klenke, “Experiences Using the Xilinx MicroBlaze
Soft-core Processor and uC-linux in Computer Engineering
Capstone Senior Design Projects”, Proceedings of IEEE
International Conf. on Microelectronic Systems Education,
2007.

[4] R. Jesman , F. M. Vallina and J. Saniie, “MicroBlaze
Tutorial for Creating a Simple Embedded System and
Adding Custom Peripherals Using Xilinx EDK Software
Tools”, 2006.

[5] J. Wu, I. Syed and J. Williams, “Creating a simple uC-linux
ready MicroBlaze Design version 1.05a”,
http://itee.uq.edu.au/~wu/downloads/uC-
linux_ready_Microblaze_design.pdf

[6] J. Odagiri, A. Akiyama, N. Yamamoto and T. Katoh,
“Performance Evaluation of EPICS on PowerPC” ,
Proceedings of ICALEPCS, Beijing, 1997.

[7] K. Žagar, “Channel Access - Protocol Specification”,
http:// epics.cosylab.com/cosyjava/JCA-Common/
Documentation/ CAproto.html, 2003.

FRCC03 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

278C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software and Hardware Technology

