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Abstract 

 A soft core processor is a flexible hardware description 
language (HDL) model of a specific processor (CPU) that 
can be customized for a given application and synthesized 
for an FPGA as opposed to a hard core processor which is 
fixed in silicon.  Combined with an on board ethernet 
port, the technology incorporates integrating the IOC and 
digital control hardware within a single FPGA thus 
reducing the overall hardware complexities of field 
devices. In this paper, the technical details of porting 
EPICS Channel Access Server on MicroBlaze soft-core 
processor are explained. The EPICS performance on the 
MicroBlaze processor is analyzed. For this, the CPU load 
and server processing time for different numbers of 
Process Variables (PVs) have been studied for this 
platform. On the basis of the analysis, critical parameters 
of EPICS on this embedded platform have been derived 
and a few modifications in the channel access protocol are 
proposed for MicroBlaze soft-core processor. 

  

INTRODUCTION 
 Experimental Physics and Industrial Control System 

(EPICS) has been used in many accelerator laboratories to 
design the control system of accelerator under a unified 
architecture for better reliability, integrity and security of 
the overall control system of an accelerator. 

The Input Output Controller (IOC) is the heart of an 
EPICS distributed control system and many such IOCs 
can be distributed over the control network. These IOCs 
are generally loaded in Personal Computers (PCs) running 
windows or linux operating system and placed near the 
field devices. Nowadays, the PC-based EPICS IOC is 
used in many laboratories, but it has many maintainability 
issues.   

A soft core processor is a flexible CPU architecture that 
is configured in the FPGA as opposed to a hard core 
processor which is fixed in silicon.  Combined with an 
on-board Ethernet port, the technology incorporates the 
IOC and digital control hardware within a single FPGA 
[1]. Nios II (by Altera), MicroBlaze (by Xilinx), 
OpenRISC 1200 (by OpenCores.org),  LatticeMicro32 
(by Lattice Semiconductors) and Cortex-M1 (by ARM 
Limited) are some of the soft-core processors that are 
targeted mainly for FPGA implementation. On the basis 
of various features like portability of Linux operating 
system, availability of FPU (Floating Point Unit) and 
MMU (Memory management Unit) and number of logic 
elements occupied, it has been seen that MicroBlaze 

processor core is the most optimized target soft-core 
processor for our application. The use of MicroBlaze 
processor and the uC-linux operating system has been 
very successful to date [2]. Also placing the processor and 
the user-defined hardware on the same device does offer 
many benefits and better reflects the state-of-the-art in 
systems-on-chip [3]. Our 62.5 MHz MicroBlaze provides 
a great deal of processing power, the Spartan-3A FPGA 
provides the capability to implement a significant amount 
of user-logic, and the uC-linux operating system provides 
a good platform for software development and debugging. 

The scope of this paper includes porting EPICS on 
FPGA based MicroBlaze soft-core processor and analyze 
the EPICS record processing and channel access 
performance on it. To achieve this, broad steps which are 
necessary to be performed are described in the subsequent 
sections. 

BUILDING MICROBLAZE PROCESSOR  

We have used mainly Xilinx Platform studio for 
building the MicroBlaze system [4] ( i.e. the processor 
along with the peripherals and interconnects ). Figure1 is 
the basic flow diagram representing the steps involved in 
building a MicroBlaze system that has been customized 
as per requirements in our case. 

  

Figure 1: Flow Diagram for Building MicroBlaze System. 
 ___________________________________________  
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PORTING LINUX ON MICROBLAZE 
The uC-linux 2.6 has been ported [5] on the 

MicroBlaze system built for our purpose. The original 
uC-linux was a derivative of Linux 2.0 kernel intended 
for microprocessor based systems without a Memory 
Management Unit (MMU). Though the present version of 
uC-linux 2.6 also supports MMUs, however, in our 
system we have implemented it without an MMU. Figure 
2 describes broadly the steps followed by us for the 
porting of linux kernel on the MicroBlaze soft-core 
processor. 

PORTING EPICS ON MICROBLAZE 

Portable Channel Access Server was cross compiled 
manually for MicroBlaze architecture. Successful testing 
was performed on Xilinx Spartan-3A DSP 1800 
evaluation board. It was found that following are the steps 
need to be followed for porting channel access server on 
MicroBlaze. 

Building GNU Cross Compiler Tool-chain for 
MicroBlaze-uC-linux Platform 

 Xilinx MicroBlaze GNU tools source package was 
built which includes binutils-2.16, gcc-4.1.2, gdb-6.5 and 
newlib-1.14.0. 

Building the Necessary Library Packages for 
MicroBlaze-uC-linux Platform 

The libCom, libca, libcas, libgdd and librt libraries 
were needed to be built in addition to prebuilt libraries in 
the compiler tool-chain. 

Compiling the Portable Channel Access Source-
codes Using MicroBlaze-uC-linux Tool-chain   

 Portable Channel Access source codes provided in 
makeBaseApp are compiled using a suitable makefile, 
created manually. 

Building the uC-linux Kernel Image Along with 
Server Application 

The server application created above is included in the 
kernel image of uC-linux 2.6. 

Downloading the Kernel Image into FPGA 
The resultant kernel image is downloaded to the 

configuration flash memory of the FPGA board. 

Table 1: List of MicroBlaze Configurations 

Configuration Pipelining I-Cache D-Cache 

Conf. 1 3 Stage 2 kB 2 kB 

Conf. 2 3 Stage 8 kB 8 kB 

Conf. 3 5 Stage 2 kB  2 kB 

Conf. 4 5 Stage 8 kB 8 kB 

 

 

Figure 2: Flow Diagram for porting uC-linux. 

  

PERFORMANCE ANALYSIS OF EPICS  

We have calculated mainly two parameters while doing 
the performance analysis of Channel Access Server on 
MicroBlaze processor [6]. 

1. Server CPU Load: This is percentage utilization of 
CPU resource at the server end while servicing to the 
client requests. 

2. Server Processing Time: Time required by the 
server to accept the client requests, process them and 
publish them back to the client. 

The Channel Access Protocol [7] is consisting broadly 
of four steps viz. Channel Connect, Put, Get and free. The 
individual Server CPU load and processing time for each 
of these steps are measured for MicroBlaze and compared 
to ARM9 processor which has a similar architecture of 
MicroBlaze but having a fixed-core that lacks the facility 
of changing the processor architecture and peripherals 
unlike soft-core processors.  For each processor type, the 
maximum number of PVs in the database is calculated 
from the Server Processing Time and safe limit of number 
of PVs is estimated from the CPU load parameter. Since 
MicroBlaze processor is fully customizable soft-core 
target, so four different configurations are built and tested 
in order to optimize the results.  The four configurations 
are listed in Table 1. 

Figure 3 and 4 shows the graph of CPU Load (in %) to 
number of PV requests at the server machine for ARM9 
and MicroBlaze processor (Configuration 4) respectively. 
For the other configurations of MicroBlaze processor we 
have got similar results. 
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Figure 3: CPU load in ARM9. 

 

 

Figure 4: CPU load in MicroBlaze (Conf. 4). 

Figure 5 and 6 shows the server processing time per PV  
for channel access get and put on different platforms. As 
expected with higher cache memory and greater number 
of stages of pipelining the performance of the MicroBlaze 
processor is enhanced. But the ARM9 processor is almost 
twice as fast as MicroBlaze (8 kB cache and 5 stage 
pipelining). The probable reasons for this are as follows: 

1. No memory management unit in MicroBlaze 
processor.

2. Fork is not supported. 
3. Higher processor speed (200 MHz for ARM9 

processor and 62.5 MHz for MicroBlaze Processor). 

 
Figure 5: Server processing time per PV for CA_Put. 

 

Figure 6: Server processing time per PV for CA_Get. 

From the server processing time per PV graph, we have 
calculated the maximum number of PVs that are allowed 
in the server database. Results are calculated for three 
different scan periods of PVs viz. 0.1, 1 and 10 seconds 
and listed in Table 2.  These values are estimated 
considering only Channel Access Get. Also we have 
estimated a safe limit of PVs from Figure 3 and 4 which 
determines the number of PV requests from client up to 
which the server can process without overloading itself. 

Table 2: Results for Maximum Number of PVs at 
Different Scan Rate and Safe lLimit of PVs 

Config. Max. PV 
Limit(0.1s) 

Max. PV 
Limit (1s) 

Max. PV 
Limit (10s) 

Safe PV 
Limit 

Conf. 1 80 1200 12000 2500 

Conf. 2 80 2000 20000 3000 

Conf. 3 80 1300 13000 2500 

Conf. 4 80 2200 22000 4000 

ARM9 400 4000 40000 5000 

 
SOME ABNORMAL BEHAVIOURS IN 

LOWER RANGE OF PVS 

Figure 7, 8 and 9 shows the graph between processing 
time per PV vs. No. of PVs in Channel Connect, Put and 
Get respectively. The graphs show the detailed trend of 
curve in lower range of PVs (i.e. between 1 to 1000). In 
all the three graphs we see that a sudden rise in server 
processing time per PV takes place at different number of 
PVs for MicroBlaze processors. Only configuration 1 and 
4 are shown here but similar nature is obtained for all the 
MicroBlaze configurations. For Channel Connect there is 
a sharp rise in server processing time per PV when the 
number of PV requests crosses 430. Similar peaks can be 
seen at 60 and 100 for Channel Put and Get respectively. 
It can be noted that for the ARM9 processor such peaks 
are not seen. 
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Figure 7: CA_Connect in MicroBlaze. 

 

Figure 8: CA_Put in MicroBlaze. 

 

Figure 9: CA_Get in MicroBlaze. 

After analyzing the reason behind these peaks, it has 
been found that repetitive retransmission of TCP 
segments of the TCP/IP stack is taking place while 
communication with MicroBlaze processor. This is 
making per PV transaction time nondeterministic in a 
congestion free network channel, hence the soft real time 
response of EPICS channel access is being violated which 
is normally achieved in a network with 30% load, 
possibly with minimum or no collision domain in the 
network design by intelligent network switches. 

 

Figure 10: Wireshark screenshot for TCP communication 
with MicroBlaze Server. 

It has been seen that in MicroBlaze Processor due to 
limited memory resources and lack of memory 
management unit and a known bug in soft_irq process, a 
few data packets are often lost which triggers the 
retransmission in the client socket. This phenomenon is 
totally unreliable as it depends on the non-deterministic 
transmission delay of packets with adaptive 
retransmission algorithm. In the case of less number of 
PV requests there is no retransmission taking place 
because only one TCP data packet (1448 Bytes) is enough 
and as soon as multiple TCP packets are sent, 
retransmission is happening due to the inability of 
multiple data packet handling of the MicroBlaze 
processor. The repetitive retransmission enables the 
retransmission algorithm to increase the retransmission 
timeout. Moreover, in some cases Nagles algorithm 
comes into picture which tries to increase the packet size 
in order to compensate the time loss. This worsens the 
situation because the server (MicroBlaze) is not capable 
of handling bigger data packets which again causes 
retransmission. This phenomenon deteriorates the overall 
network performance. 

PROPOSED IMPROVEMENT 

Looking into the above scenario of retransmission a 
solution can be proposed which will be effective for any 
embedded system lacking the hardware resource which 
causes non-deterministic network communication with 
EPICS channel access protocol.  

 

Figure 11: General Message Header in Channel Access. 
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In the EPICS channel access a technique, the concept of 
message buffering is introduced which increases the 
efficiency of the channel by grouping individual messages 
in a single message segment. In congestion free network 
where repetitive retransmission is a common phenomenon 
due to the inefficiency of handling multiple TCP packets 
by the server socket, this message buffering concept is a 
bottleneck. It can be straight way proposed for the 
MicroBlaze processor that the optimized channel access 
performance would be with the message buffer size equal 
to 1448 with BSD socket (derived from wireshark 
results). Nonetheless, considering this retransmission 
phenomena in other embedded systems lacking resources, 
we can think of an adaptive message buffering algorithm 
in channel access to change the payload size dynamically 
during the initial connection with server or on notification 
from the server which can be described as follows: 

 Start with a fixed payload size (say Payload Original) 
for channel access message buffer. 

 If retransmissions are detected in the media, reduce 
the payload size to half of its previous value. 

  i.e. Payload New = Payload Original / 2 
 Detect for any retransmission in the media. If 

retransmission is detected reduce the payload size 
further by half of its previous value. 

 Thus after N iterations when there is no 
retransmission in the media, the final payload size 
becomes 

  Payload Final  = Payload Original / 2N 

 N =  

PayloadFinal  is the optimum payload size for message 
buffer in channel access for no retransmission. 

This algorithm has to be embedded with the general 
message buffering available in channel access as the same 
client may connect a IOC server where the performance is 
better with the general message buffer and hence the 
additional logic in the embedded server should be defined 
to notify the client that it needs the proposed adaptive 
message buffering algorithm to establish connection. 

CONCLUSION 

In this project we have successfully ported EPICS 
channel access server on MicroBlaze soft-core processor. 
To understand the suitability of embedded systems in 
real-time environment, EPICS channel access and record 
processing performances have been analyzed for 
MicroBlaze platform and the results are compared with 
standard ARM9. The CPU load and server processing 
time for different numbers of client requests have been 
studied. Maximum number of PV limit in a server 
database is calculated for both Microblaze and ARM9 
server machine. The performance in MicroBlaze soft-core 
processor can be considerably improved by suitably 
tuning the processor architecture (like size of cache 
memory and number of stages of pipelining). Another 
improvement being proposed for embedded system is the 
change in message buffer size of EPICS channel access 

which quite frequently causes retransmission and thus 
degrading the real-time performance of the system. 

REFERENCES 
[1] D. Curry, A. Hofler, H. Dong, T. Allison, C. Hovater, K. 

Mahoney,“Implementation of an EPICS IOC on an 
Embedded Soft Core Processor Using Field Programmable 
Gate Arrays”, Proceedings of 10th ICALEPCS, Geneva, 
2005. 

[2] J.G. Tong, Ian D.L. Anderson, Md. A. S. Khalid, “Soft-
Core Processors for Embedded Systems”, Proceedings of 
18th International Conference on Microelectronics (ICM), 
2006. 

[3] R. H. Klenke, “Experiences Using the Xilinx MicroBlaze 
Soft-core Processor and uC-linux in Computer Engineering 
Capstone Senior Design Projects”, Proceedings of IEEE 
International Conf. on Microelectronic Systems Education, 
2007. 

[4] R. Jesman , F. M. Vallina and J. Saniie, “MicroBlaze 
Tutorial  for Creating a Simple Embedded System and  
Adding Custom Peripherals Using  Xilinx EDK Software 
Tools”, 2006. 

[5] J. Wu, I. Syed and J. Williams, “Creating a simple uC-linux 
ready MicroBlaze Design version 1.05a”, 
http://itee.uq.edu.au/~wu/downloads/uC-
linux_ready_Microblaze_design.pdf 

[6] J. Odagiri, A. Akiyama, N. Yamamoto and T. Katoh, 
“Performance Evaluation of EPICS on PowerPC” , 
Proceedings of ICALEPCS, Beijing, 1997. 

[7] K. Žagar, “Channel Access - Protocol Specification”,  
http:// epics.cosylab.com/cosyjava/JCA-Common/ 
Documentation/  CAproto.html, 2003. 

FRCC03 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

278C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software and Hardware Technology


