
INTRODUCING THE !CHAOS CONTROL SYSTEM FRAMEWORK
L. Catani, F. Zani, INFN-Roma Tor Vergata, Roma, Italy

C. Bisegni, D. Di Giovenale, G. Di Pirro, L. Foggetta, M. Mara, G. Mazzitelli, A. Stecchi
INFN-LNF, Frascati, Italy

Abstract
The analysis of most recent developments on high-

performance software technologies suggests that new a de-
sign of distributed control systems (DCS) for particle accel-
erators and large experimental apparatuses can profit from
solutions borrowed from cutting-edge Internet services. To
fully profit from this new technologies the DCS model
should be reconsidered, thus leading to the definition of a
new paradigm. In this paper we present the conceptual de-
sign of a new control system for a particle accelerator and
associated machine data acquisition system (DAQ), based
on a synergic combination of a non-relational key/value
database (KVDB) and network distributed object caching
(DOC). The use of these technologies, to implement con-
tinuous data archiving and data distribution between com-
ponents respectively, brought about the definition of a new
control system concept offering a number of interesting
features such as a high level of abstraction of services and
components and their integration in a framework that can
be seen as a comprehensive control services provider for
GUI applications, front-end controllers, measurement and
feedback procedures etc. The work is under development
by a collaboration of INFN-LNF and INFN-Roma Tor Ver-
gata with growing contributions from other academic and
industrial partners.

THE !CHAOS FRAMEWORK
A typical example of software technology emerging

from developments of Internet services is the class of non-
relational databases known as key/value database. They
offer an alternative to relational databases (RDMS) that
is having a growing success and interest among develop-
ers of web services due to of their high throughput, scala-
bility and flexibility. Another example are the distributed
memory object caching systems. They provide in-memory
key/value store for small chunks of frequently requested
sets of information in order to both respond faster to re-
quests and to distribute the load of the main server to a
scalable cluster of cache servers.

These two software technologies represent the core com-
ponents in the design of this new control system we named
!CHAOS [1] (i.e. “not” CHAOS, where CHAOS acronym
stands for Control system based on Highly Abstract Open
Structure) [2, 3].

In particular, the KVDB is used by DAQ for managing
what we call history data, while the DOC implements the
service for distributing live data from the front-end con-
trollers to clients, thus replacing the client/server commu-
nication.

Datasets that need to be updated are identically pushed,

abstraction b
o
u
n
d
a
ry

live-data

(DOC)
MD Server

DAQ

(KVDB)

commands
alarms

BSON

Figure 1: The “control service provider” model and the
!CHAOS framework abstraction boundaries.

by front-end controllers, to both DOC and KVDB servers
by issuing set commands. It means that data collection
mechanism for DAQ is inherently included in the !CHAOS
communication framework because both live and history
data are pushed by the data source (the front-end con-
trollers) to similarly distributed caching and storage sys-
tems. Moreover, since both DOC and KVDB use key/value
data storage, formatting and serialization of datasets can be
done once for both.

It is important noting that both the client applications
and the front-end controllers are simple clients of the dis-
tributed object caching and DAQ. In particular, provided
the DOC has an object container for each dataset of the
DCS, defined by its unique key, a GUI client simply sends
to the !CHAOS DOC service a get request for the object
identified by that particular key, i.e. the dataset describing
the associated device. On the other side the controller re-
sponsible for that device updates the correspondent dataset,
according to the push rate defined for it, by issuing set com-
mands to the DOC.

Data refresh rates, as well as other meta-data such as
global parameters, CU configuration, commands and data
syntax and semantic etc. will be managed by the meta-data
server (MDS). The Meta Data Server will be also the cen-
tral authority for !CHAOS components. It will keep track,
for instance, of the Control Units instantiations. As su-

FRID01 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

282C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Verification and Validation of Control System Design



pervisor of their initialization, it will manage, at start up,
the registration of CUs’ services and datasets providing
them with a systemwide unique reference to be properly
addressed by client applications.

It is worth mentioning that in !CHAOS the DOC layer is
not operated as an object caching in a strict sense since the
distributed memory is not populated after clients’ requests.
Instead, each dataset is by default stored in the DOC and
continuously updated by the front-end controllers. Never-
theless the datasets transfer from front-end to clients can
still profit from the high performance of the distributed
caching systems that, in addition, prevents front-end con-
trollers from overload originated by multiple clients’ re-
quests [4].

Another benefit of the !CHAOS design is that the front-
end controllers don’t need to run servers to provide data to
clients since they themselves are clients of the data distri-
bution and storage services. That improves their robustness
and portability.

A fundamental property of both DOCs and KVDBs is
their intrinsic scalability that allows distributing a single
service over several computers. Moreover, dynamical keys
re-distribution allows automatic failover by redirecting to
other servers the load of a failed one.

The data-pushing strategy allows to further extend the
abstraction boundary at the front-end. The Controller’s
functionalities can be simplified and standardized by intro-
ducing the Control Unit (see next paragraph), a manager
and a supervisor of the software modules implementing the
device’s specific control procedures.

In addition, abstraction of services will be implemented
throughout (Fig. 1). Access to live or history data, for in-
stance, will be provided by !CHAOS APIs wrapping the
service specific APIs in such a way that client’s access to
services, and even internal communications, will not be af-
fected by the modification or replacement of any core com-
ponent.

Serializations of datasets and of information passed be-
tween components (e.g. command’s parameters, result of
queries, etc.) will further improve the abstraction of ser-
vices by using a binary string as the common format for
the methods’ payload [5].

The commands dispatching and the events notification
services complement the communication and interconnec-
tion between !CHAOS components. A cross-language
RPC-like software (i.e. msgpack [6]), included in the
!CHAOS libraries, will be used by client applications for
sending commands to front-end controllers.

In conclusion !CHAOS is a scalable control system
framework providing, at a high level of abstraction, all the
services needed for communication, data archiving, timing,
etc.; GUI applications and front-end controllers access the
framework services and expand its functionalities.

CONTROL UNITS
Figure 2 shows the logical structure of the software run-

ning in a front-end controller. The Control Unit (CU), the

CU Toolkit

fro
n

t-e
n

d
 c

o
n

tro
lle

r

Control

Unit

in
it

in
it

c
o

n
tro

l lo
o

p
c
o

n
tro

l lo
o

p

c
m

d
s
 e

x
e

c

s
to

p

d
e

-in
it

Control

Unit

in
it

in
it

c
o

n
tro

l lo
o

p
c
o

n
tro

l lo
o

p

c
m

d
s
 e

x
e

c

s
to

p

d
e

-in
it

distributed

KVDB
distributed

object caching

meta-data

server

Commands

Alerts

(u
s
e

r 
d

e
fi
n

e
d

) 
d

e
v
ic

e

m
a

n
a

g
e

m
e

n
t 

m
o

d
u

le
s

dev-1

Common Toolkit

Control

Unit

in
it

c
o

n
tro

l lo
o

p

c
m

d
s
 e

x
e

c

s
to

p

d
e

-in
it

Figure 2: !CHAOS components for the front-end con-
trollers.

CU Toolkit and the included Common Toolkit are compo-
nents of the !CHAOS framework while the device manage-
ment modules (DMM) are software modules that comple-
ment the !CHAOS framework functionalities by providing
the interface to the device. The development of these com-
ponents is expected either as a contribution, or as a respon-
sibility, of the device experts. They will simply focus their
work on the development of control loops, commands exe-
cution etc. while all the other operations will be delegated
to the !CHAOS Framework.

One or more instances of CU can run simultaneously, al-
though completely independent, in a front-end controller.
Each CU should be dedicated to a particular device or a
family of devices and specialized for that particular com-
ponent by means of appropriated device management mod-
ules. The latter is a set of routines implementing the
device’s specific functionalities grouped into five general
modules: initialization, de-initialization, stop, control loop
and commands execution.

When a command issued by a client application is re-
ceived by the CU, the command execution module will be
invoked for executing it.

The command is delivered to the CU Toolkit running the
command server for all the CUs managed by that particular
controller. The CU Toolkit, by analyzing command’s do-
main, identifies the CU to which it is targeted and appends
it to the correspondent command’s queue.

If the application issuing the command requires a direct
read-back from the CU this can be provided by returning
the command’s results to the client’s call. Alternatively,
since also the UI Toolkit will host a msgpack server, the
client application could be notified, yet asynchronously, on
the results of the command’s execution by a message de-
livered from the CU. The latter, actually, is the preferred
solution.

Proceedings of PCaPAC2012, Kolkata, India FRID01

Verification and Validation of Control System Design

ISBN 978-3-95450-124-3

283 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Upon receipt of the command the CU verifies that the
method alias indicated in the command’s header is avail-
able and it can be executed (i.e. there is no other blocking
method pending) and then launches the commands execu-
tion module. The rest of the serialized information con-
taining the instructions for the action to be taken is passed
as-it-is to the command’s execution module.

The implementation of separated threads assures that re-
quested periodicity of dataset refreshing is preserved even
during any commands’ execution. In addition the serial-
ization of the command’s descriptor (i.e. the command’s
header, method name, parameters etc.) passed to the execu-
tion module allows a common interface for all the methods
to be implemented.

During the command execution, if needed, the refresh
rate of the device can be set, at least temporary, to an higher
value providing the operator and the history data archiv-
ing system with a more detailed description of the attribute
evolution. Modification of parameters like the data refresh
rate are superintend by the Meta Data Server. All compo-
nents concerned with this change will receive notification
by means of the events notification system.

HST ENGINE
In !CHAOS the DAQ, i.e. the machine data acquisi-

tion system, is provided by the service we call History
(HST) Engine. A distributed file system is used to store
data produced by machine operations while a KVDB man-
ages the indexes structure; candidates are Hadoop [7] and
MongoDB [8] respectively. The functionalities of !CHAOS
HST Engine are allocated to three dedicated components,
or nodes, namely the CQL Proxy (where CQL stands for
CHAOS Query Language), the Indexer and the Maintainer.

Figure 3 shows the data flow and the role of the be-
fore before mentioned nodes in data writing (red) and read-
ing/querying operations. Grey lines are used to indicate
internal actions and data flow.

A CU starts the writing process by sending a dataset to
the CQL Proxy indicated, from the MDS, as its primary
HST server (1). Upon receipt of the package, the proxy
interprets the CQL command and writes the data into the
file system (2). Hadoop automatically replicates the data in
the other servers of the cluster (grey lines). Then the CQL
Proxy informs the pool of Indexer nodes about the new en-
try (3) and the first available Indexer appends the task to its
queue. When processing the entry, the Indexer first reads
the packet (i.e. the dataset) from the first available Hadoop
node (4), analyzes it and, according to the indexing rules,
updates the corresponding indexes on the MongoDB (5).
The default indexing strategy will be by chronological or-
der, i.e. based on the timestamp and bunch/packet number
within timestamp intervals.

Queries to HST are triggered from client applications by
sending a CQL command (1) to the proxy with the high-
est priority in its list. The proxy node decodes the request
and passes it to the first available Indexer (2) that in turn,
by querying the Indexes DB, receives the positions of data

Proxy - CQL #2
Indexer #1

Indexes DB

FS Svr #1

FS Svr #2

FS Svr #3

2

2

1

1

3

3

4

4
5

6

5

Proxy - CQL #1

Figure 3: !CHAOS History Engine and its components.

packets (3) satisfying the query’s conditions (e.g. all data
packets within a certain time interval) and sends them to
the CQL Proxy (4). The packages are then collected (5)
from various FS Servers and sent (6) to the client.

It’s worth mentioning that since responses to queries are
asynchronous and tasks can be distributed among different
nodes, data packets resulting from a query can be provided
to the client application also by CQL Proxies different from
the one that originally received the request.

CONCLUSION
The design of the !CHAOS Framework is approaching

its final stage. The whole architecture has been completed
in details and prototypes of the main services are already
under test. Other components and concepts not presented
in this paper, namely Execution Unit, I/O Unit, Notifica-
tion Service etc., have also been developed. Porting of
!CHAOS libraries to various platforms, including ARM
based boards, has been successfully completed. Moreover
some !CHAOS components have been already adopted by
the DAFNE and SPARC control systems at INFN-LNF and
successfully operated since several months.

REFERENCES
[1] http://chaos.infn.it

[2] G. Mazzitelli et.al., “High Performance Web Applica-
tions for Particle Accelerator Control Systems”, Proceed-
ings of IPAC2011, San Sebastian, Spain, pp.2322-2324,
http://www.JACoW.org

[3] L. Catani et.al., “Exploring a New Paradigm for Accel-
erators and Large Experimental Apparatus Control Sys-
tems”, Proceedings of ICALEPCS2011, Grenoble, France,
http://www.JACoW.org

[4] http://memcached.org

[5] http://bsonspec.org

[6] http://msgpack.org

[7] http://hadoop.apache.org

[8] http://www.mongodb.org

FRID01 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

284C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Verification and Validation of Control System Design


