
HYPERARCHIVER: AN EVOLUTION OF EPICS CHANNEL ARCHIVER
M. del Campo∗, I. Arredondo, ESS-Bilbao, Zamudio, Spain

J. Jugo, University of the Basque Country, Leioa, Spain
M. Giacchini, L. Giovannini, INFN/LNL, Legnaro, Italy

Abstract
Data storage is a primary issue in any research facility.

In the EPICS middleware based accelerator community,
Channel Archiver has been always considered the main ref-
erence. It works with Oracle and MySQL, probably the
best well known relational databases. However, demanding
requirements at minimum costs have fostered the develop-
ment of a wide range of alternatives, like MDSPlus (Con-
sorzio RFX), SciDB (BNL) or Hypertable (IFNF). This
document launches a tool called HyperArchiver, which
was firstly developed at IFNF (Italy) and eventually cus-
tomised by ESS Bilbao (Spain). Based on a NoSQL
database named Hypertable, it focuses on large data sets
management with maximum scalability, reliability and per-
formance. Besides the update and further customization
made at ESS Bilbao, HyperArchiver is presented with a
set of GUIs, in order to provide an easy use and integra-
tion with any general control system. A LabVIEW VI and
two cross-platform PyQt GUIs for both Hypertable data re-
trieval and HyperArchiver control have been developed and
successfully tested at ESS Bilbao (see Figures 1–3).

INTRODUCTION
Particle accelerators are very complex and expensive de-

vices. Therefore a reliable distributed control system al-
lowing easy maintenance and upgrading turns basic in this
kind of facilities. EPICS (Experimental Physics and In-
dustrial Control System) is a set of Open Source software
tools and applications, which provides the infrastructure
for distributed control systems. Many particle accelerator,
large experiments and major telescopes facilities use it to
build complex control systems made of tens or even hun-
dred of computers, networked together to allow commu-
nication between them and provide control and feedback
from different locations. In this context, data storage is a
very important issue, not only as part of the control sys-
tem itself, but also for the proper functioning and use of
the accelerator and its experimental lines.

EPICS ARCHIVING TOOLS
The most standard EPICS standalone client for data

archiving is called Channel Archiver [1], which is based
on the relational databases MySQL and Oracle (therefore
it is also called RDB Archiver). Unfortunately, they both
have some well known drawbacks, which explain the ef-
forts made towards the improvement of its performance and
usability [2]. However, this has also fostered the develop-
ment of a wide range of alternatives focused on high perfor-
mance and large-scale dataset management, like MDSPlus,

∗mcampo@essbibao.org

SciDB (BNL) [3] or Hypertable (IFNF) [4]. In this work
only the last one will be discussed, but it should be kept
in mind that they are all possible solutions for the RDB
Archiver limitations.

Channel Archive
The Channel Archiver is the standard archiving tool for

EPICS. Using the EPICS Channel Access (CA) network
protocol, it can collect real-time data from any CA server
on the network. It stores the full data set offered by CA
(values, timestamps, status information, engineering unit
names and display, control and alarm limits), allowing
scanning at a fixed period or on change.

Since its original design, the EPICS Channel Archiver
has undertaken several significant transformations. The
version publicly known as an EPICS extension [1] was
developed at the Spallation Neutron Source (SNS), Los
Alamos, USA. Its main feature is the usage of a relational
database instead of the indexed files used by the original
Channel Archiver [5]. This version of Channel Archiver
supports both MySQL and Oracle RDB and is entirely writ-
ten in Java as part of the Control System Studio (CSS).
This tool significantly improves data access and retrieval,
in comparison to the original indexed file. Nevertheless,
both Oracle and MySQL have some disadvantages like the
expensive costs of Oracle or the effective maximum table
size in MySQL, which can become a great limitation con-
sidering that RDB Channel Archiver stores all samples in
one single sample table.

HyperArchiver
HyperArchiver [6] is a modification of the Java RDB

ArchiveEngine which uses Hypertable instead of MySQL
or Oracle. It was developed at INFN/LNL in Legnaro
(Italy) and customised at ESS Bilbao (ESS-B) afterwards.
Hypertable is a non relational, high performance and dis-
tributed database released under GNU license, which fo-
cuses on management of large data sets with maximum
scalability and reliability. HyperArchiver is actually a hy-
brid version, as samples (bulk data) are stored in Hyper-
table database, but the basic static data of EPICS PVs is still
recorded in RDB Archiver’s MySQL database. First tests
at Brookhaven National Laboratory (BNL), USA, have al-
ready shown very good performance on data insertion and
retrieval [7].

HYPERARCHIVER AT ESS BILBAO
HyperArchiver Customization

HyperArchiver version released at Legnaro was meant
to be used with Hypertable 0.9.3.3, and had some proved

THCB01 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

106C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Databases



limitations on arrays management. For these reasons, at
ESS-B some further modifications where required before it
could be properly used. The features added at ESS-B to the
original HyperArchiver are the following:

• Upgrade from 0.9.3.3 to 0.9.4.3 and further Hyper-
table versions (a new architecture based on names-
paces was introduced from version 0.9.4.3). Last
setups at ESS-B are currently working with version
0.9.5.6.

• Improve the management of large arrays and the way
they are stored inside Hypertable. This was something
that had not been tested during HyperArchiver devel-
opment at INFN/LNL, mainly focused on single PVs.

• Provide the user the possibility to automatically cre-
ate the EngineConfigImport XML configuration file
directly from an EPICS database file. This goes along
with a general effort at ESS-B to standarize all config-
uration files, providing conversion tools.

Integration into the General Control System

The standard use of HyperArchiver remains the same as
for the classical RDB Channel Archiver. They both can be
easily controlled from any command-line interface termi-
nal. Nevertheless in order to simplify its use, especially
for operators who might not be used to the UNIX terminal
interface, an additional effort was made to develop some
graphical user interfaces (GUI).

PyQt: PyQt4 is a set of python bindings for the Qt 4
cross-platform GUI/XML/SQL C++ framework. A stan-
dalone PyQt4 GUI was written in python at ESS-B and and
has been established as the internal standard interface for
HyperArchiver clients. It allows not only the initialization
and termination of the HyperArchiver services but also the
customisation of all its configuration parameters with no
need to use the command line terminal or any external text
editor tool. This avoids the user a lot of tedious work.

Figure 1: PyQt GUI for HyperArchiver Control.

LabVIEW: HyperArchiver is just one of many tools
used in a control system. Therefore its integration into the
general control system should be as easy and quick as pos-
sible. This was the purpose of a set of LabVIEW virtual in-
struments (VI) designed to control the Archive Engine with
the same functionalities as the PyQt interface. This makes
extremely easy the integration of a data storage engine in
any of the LabVIEW control programs which are used at
ESS-B at the moment, by simply including the mentioned
VIs (programs/subroutines) inside the general block dia-
gram.

Figure 2: LabVIEW VI for HyperArchiver control.

Data Visualization
Regarding data visualization, the INFN/LNL version of

Hypertable included a further modification of CSS code for
the retrieval of historical data from Hypertable instead of
MySQL or Oracle. It pictures data by means of the CSS
data browser. CSS is a very powerful tool which provides
a lot of functionalities. However, at this moment at ESS-B,
less complex and more specific tools were requested. In
this way, another python GUI was developed in order to
have at disposal a simple data retrieval tool, lighter than
CSS. It uses the Hypertable Thrift Client Interface to ac-
cess the database and after thorough tests at ESS-B [8] it
proved to be even faster than CSS Data Browser. Moreover,
the use of python made it possible to integrate the data re-
trieval tool into the general HyperArchiver PyQt GUI, mak-
ing available all the functionalities required for the control
and use of HyperArchiver from a single multiplatform user
friendly interface.

RESULTS
This work presents the EPICS experience at ESS-B re-

garding data storage and database management. To date,
two different versions of EPICS Archive Engine have been
used and tested to study their performance and suitability to
ESS-B requirements: RDB Archiver and HyperArchiver.

RDB Archiver: RDB Archiver was set up with a
MySQL server. Both the Archive Engine and the relational
database worked without any issue during laboratory tests.
However, first real tests at ITUR (the ESS-Bilbao’s front-
end test stand for ion sources) revealed a potencial problem
regarding size limitations of the tables. ITUR’s control sys-
tem is characterized by the use of several array PVs, sam-

Proceedings of PCaPAC2012, Kolkata, India THCB01

Control Databases

ISBN 978-3-95450-124-3

107 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 3: PyQt GUI for Hypertable data retrieval.

pled at a high sampling rate, for waveform storage. Consid-
ering that RDB Archiver manages arrays creating an entry
into a single MySQL for every item of each array, size lim-
itation turned out to be a problem. The maximum table
size for MySQL databases is usually determined by oper-
ating system (OS) constraints on file sizes, not MySQL,
but can be so restrictive as 4GB on a 32-bit architecture
MySQL. Table 1 lists some rough aproximations on differ-
ent OS [9]. The use of a proprietary distributed cluster of
Oracle’s databases was dismissed at first at ESS-B, which
leans towards the promotion of the Open Source model.
The better suitability of a distributed large-scale dataset ori-
ented database thence emerged.

Table 1: File Size Limits on Different OS

Operating System File size Limit

Win32 w/ FAT/FAT32 2 GB / 4 GB)
Win32 w/ NTFS 2 TB
Linux 2.2-Intel 32-bit 2 GB (LFS: 4 GB)
Linux 2.4+ 4 TB (using ext3)
Solaris 9/10 16 TB
MacOS X w/ HFS+ 2 TB

HyperArchiver: HyperArchiver is actually a modifica-
tion of RDB Archiver which stores data into the NoSQL
database Hypertable instead of the RDB MySQL or Ora-
cle. Hypertable is designed to manage the storage and pro-
cessing of data on a large cluster of commodity hardware,
providing resilience to machine and component failures. At
ESS-B it has proved to be a reliable and scalable alternative
to MySQL. Furthermore, other accelerator facilities have
shown their interest on HyperArchiver as an alternative to
the traditional RDB Archiver, like Diamond (UK).

Briefly, HyperArchiver emerged as an evolution of the
standard RDB Archiver, modified to work with Hypertable
as the main underlying database. The current trend towards
NoSQL databases seems natural in the field of particle ac-
celerators. Nowadays this kind of facilities generate huge

amounts of data, which have to be immediately processed
and properly recorded. NoSQL databases have been es-
pecifically developed to manage large volumes of data that
do not necessarily follow a fixed schema. Moreover, they
employ distributed architectures, which allows scalability
and tolerance to hardware failure, both issues of great im-
portance in any research facility.

NEXT STEPS
This aim of this work is to emphasize the feasibility

of an evolution in the data archiving field of EPICS con-
trol systems. This is made through the example of Hy-
perArchiver, a customization of the classical EPICS RDB
Archiver which uses Hypertable instead of MySQL or Or-
acle. However, the huge amount of NoSQL databases fo-
cused on large datasets like Hypertable, creates a wide
range of similar possibilities based on different databases,
or even on different storage methods. The most important
ones have already been mentioned, but with no further ref-
erences, because they have not been tested yet at ESS-B.
Therefore, even if HyperArchiver has proved to be a good
and reliable archiving client, the logical path to follow in
the future would be to test and compare other methods
available, in order to determine the advantages and disad-
vantages of each one, trying to figure out which one is more
suitable for each scenario. It is worth mentioning that this
job has already been started at BNL, where HyperArchiver
was actually conceived. They have created a common test
bench to evaluate the various archiver developments [10].

REFERENCES
[1] http://ics-web.sns.ornl.gov/kasemir/archiver/

[2] J. Rowland, M.T. Heron, S.J. Singleton, K. Vijayan, M.
Leech, “Algorithms and Data Structures for the EPICS”,
ICALEPCS 2011, Grenoble, France.

[3] N. Malitsky, D. Dohan, “A Prototype of the Next EPICS
Archiver Based on the SciDB Approach”, ICALEPCS 2011,
Grenoble, France.

[4] http://www.lnl.infn.it/~epics/joomla/

archiver.html

[5] http://arxiv.org/abs/cs/0110066v1

[6] M. Giacchini, L. Giovannini, M. Montis, G. Bassato,
J.A. Vasquez, G. Prete, A. Andrighetto, R. Petkus, R.
Lange, K. Kasemir, M. del Campo, J. Jugo, “HyperAr-
chiver: An EPICS Archiver Prototype Based on Hyper-
table”, ICALEPCS 2011, Grenoble, France.

[7] http://www.lnl.infn.it/~epics/

HyperArchiverAix2010.pdf

[8] M. del Campo, J. Jugo, M. Giacchini, L. Giovannini,
“EPICS HyperArchiver: Initial Tests at ESS Bilbao”,
IPAC2011, San Sebastiàn, Spain.

[9] http://dev.mysql.com/doc/refman/5.1/en/

table-size-limit.html

[10] http://sourceforge.net/projects/

epics-archbench

THCB01 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

108C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Databases


