
API MANAGER IMPLEMENTATION AND ITS USE FOR INDUS
ACCELERATOR CONTROL

B. N. Merh , R. K. Agrawal, K. Barpande, P. Fatnani, C. P. Navathe, #

RRCAT, Indore, India

Abstract
The control system software needed for operation of

Indus accelerators is coupled to the underlying firmware
and hardware of the control system by the Application
Programming Interface (API) manager. In the three-
layered architecture of Indus control system, PVSS-II
SCADA is being used at the layer-1(L1) for control and
monitoring of various sub-systems. The layer-2(L2)
consists of VME bus based system. The API manager
plays a crucial role in interfacing the L1 and L2 of the
control system. It has to interact with both the PVSS
database and the L2. In order to access the PVSS database
it uses the PVSS API, a C++ class library, whereas in
order to access the L2 custom functions have been built.
Several other custom functionalities have also been
implemented. The paper presents the important aspects of
the API manager like its implementation, its interface
mechanism to the lower layer and features like
configurability, reusable classes, multithreading
capability etc.

INTRODUCTION
PVSS-II [1] has a highly modular structure. Various

functionalities are handled by modules specifically
created for different tasks. These modules are called
managers. The Database (DB) and Event (EV) manager
are the core managers that handle and manage all process
variables of the system.

Figure 1: Software Layers of Indus-2 Control System.

The software layers of Indus-2 control system are as
shown in Fig.1. PVSS system works at user Interface (UI
or L1) Layer. The lower layers are Supervisory Control
(SC or L2) and Equipment Controller (EC or L3) layers.
The API manager is interfaced to the SC layer over
Ethernet.

API MANAGER

What is API Manager?
PVSS offers a C++ application interface which enables

it to extend its control functionality [2]. This interface
allows the developer to implement his own custom
functions together with full access to PVSS database. The
self contained manager so implemented is called the API
manager. It is also an interface for the integration of
external programs [2]. Any software can be integrated in
a PVSS System via class libraries provided by PVSS API.
Implementation of these managers has been done for
Indus-2 controls specific tasks. API managers have been
developed for all sub-systems of Indus-2 viz. Magnet
Power supply (MPS), RF, Beam Diagnostics (BDS),
Timing (TCS), Vacuum (VCS), Radiation Safety (RSS),
Machine safety and Interlock (MSIS), Beam line
Frontend (BLFE) and Beam Orbit Correction.

Internal Structure of API
The API manager communicates with EV and DB

Figure 2: Event or Message handling by API.

#bhavna@rrcat.gov.in

Proceedings of PCaPAC2012, Kolkata, India THPD17

Software and Hardware Technology

ISBN 978-3-95450-124-3

175 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

using messages [2]. The manager processes incoming
messages in the doReceive() function. doReceive() is
automatically called by the dispatch() function for each
incoming message. The dispatch() function is called at
regular interval in the API manager.
Each message is composed of group(s) (DpMsgAnswer,
DpHLGroup class) of DpVCItem (Data Point(DP) value
changes) [3].
Fig. 2 shows the occurrence of events and data flow
between EV, API Manager and L2.
As in Fig. 3 the DpMsgAnswer class object is returned if
a request for DP values is made, whereas DpHLGroup
object is returned on any spontaneous DP event.
In case of most functions regarding the access to data
points, messages are handled with the aid of
WaitForAnswer objects [4].
So, in order to receive notification for any DP event
HotlinkWaitForAnswer is specified as:
Static PVSSboolean dpConnect(const DpIdentifier
&dpId, WaitForAnswer *wait, PVSSboolean del =
PVSS_TRUE); [4]

Figure 3: DP Message Handling in API.

Indus-2 API Manager Functions
When the API manager is first started it executes its
initialization routines.

 Load device configuration information – Loads
device related information like signal name, L3 card
number, channel number and corresponding Data
Point information from the configuration file.

 Interface to PVSS DB – Connect to data and event
manager and for each data point get the identifier.

 Establish connection to L2 - The API manager
interfaces to L2 over custom TCP/IP application
layer protocol.

Once initialization process is run successfully, the API
manager proceeds further with its routine tasks as
follows:

 Polling - It periodically polls the L2 for status and
current operating values of the various devices of a
sub-system. The polling is done at 1 Hz. The polling
command is sent on receiving a hotlink (Fig. 2)
from the global timer which is used system–wide to

maintain synchronization among all the API
mangers.

 Data filtering- The API manger after parsing the
data, does the comparison between old and new
values of incoming data from L2 and sets only the
changes in order to reduce the network traffic and
PVSS processing.

 Data transformation – Data is first transformed
from protocol specific type to basic C++ types and
then to PVSS data type.

 Conversion – All incoming data values from L2 are
scaled to their specified ranges.

 Handle control commands – Any device settings
command or control command is received by the
API manager and a command is framed according to
the decided protocol. This is sent to L2 (Fig. 2) and
acknowledgement received.

 Event log – All events like control commands, set
commands, error received from L2, communication
break from L2, operator actions from GUI are
logged in the event log file in chronological order.
The event log file is periodically renewed after it
reaches it size limit.

Indus-2 API Manager Features

 Object oriented approach – The object oriented
programming of the API allows making full use of
its many benefits like maintainability, reusability,
extensibility etc. The code is easy to understand and
manage. In Indus control system API managers the
TCP class, the timer class, the event log class all are
reusable classes used system–wide for all API
managers. This facilitates quick development. Fig. 4
illustrates the class diagram of API manager for
magnet power supply system.

Figure 4: Class Diagram of API.

 Easily configurable - At the start-up the API
manager loads information from the configuration
files. These files have device related information
viz. signals coming from the device, the physical

THPD17 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

176C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software and Hardware Technology

mapping of signal by card type, card number and
channel number, the data point mapping of the
signal by DP name. Thus any addition/modification
/deletion of any signal need not require any change
in API code. The manager is re-run to load a new
configuration.

 Multi-threading to publish data – The API manager
also serves the programs external to PVSS system
with required data like beam current, beam energy,
beam position from all BPIs etc. It caters to multiple
clients by following a multi-threaded design.

 State Based- For a special requirement like ramping
the magnet power supplies, API manager code was
implemented such that it retains the state of the last
operation. The various states maintained are INIT,
RAMP-ON, RAMP-PAUSE, RAMP-RESUME and
RAMP-OVER. So even if the API Manager is re-
run during ramping process, it will not affect the
clock generation and ramp operation.

 Data Refresh on request – The data in the
respective Data Points is usually set from the API
manager only on change. All changes are reflected
on the operator panel. At times it is required to
refresh data which effectively will set the same data
in DP but renew its timestamp. At any instance the
API sets/refreshes all data on request from the
operator.

 Error handling – In case of error in communication
between L1 and L2, the API manager disconnects
from the global timer which stops polling. It then
tries to periodically establish connection to L2.

 Diagnostics – The API manager provides different
diagnostic information like, the status of L3 stations,
status of connection between L1 and L2, status of
any control command sent from the operator
interface and sequence of actions being taken.

Table 1 illustrates the DP load handled by various API
manager of Indus-1 (I1) and Indus-2 (I2) control system.

Table 1: Total DP Load handled by API managers.

System
Name

No. of
Devices
(approx.)

Total DP
handled by API
(approx.)

I2- MPS 174 6960

I2-RF 25 320

I2-VCS 220 1350

I2-TCS 10 145

I2-BDS 80 235

I2-RSSS 81 378

I2-BLFE 270 756

I2-MSIS - 165

I1-MPS 97 112

CONCLUSION
The Indus-2 API managers have been developed and
commissioned in 2005. Since then augmentations and
new additions have been made. All features and
functionalities mentioned in the paper have been
implemented all through these years. API managers have
been running with no crash event being reported. The
load of the over all system has been nearly constant and
lies between 17-21% with API manager load is maximum
2%. Possible extensions to the API are developing a
generic API which caters to all future up-gradations of the
Indus control system.

REFERENCES
[1] PVSS-II is a SCADA package from ETM, Austria.
[2] PVSS Driver Development by ETM.
[3] H. Milcent, P. Burkimsher, W. Salter, “How Do I Write a

Driver? Ctrl Managers, API Managers and Drivers”,
Release 2.1, 2003.

[4] PVSS-II API Documentation by ETM.

Proceedings of PCaPAC2012, Kolkata, India THPD17

Software and Hardware Technology

ISBN 978-3-95450-124-3

177 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

