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Abstract
Long-term objective of this work is to develop a fuzzy

technology based control framework to be applied in par-
ticle accelerators. Main motivation for this is the promise
of fuzzy systems to exploit the tolerance for imprecision,
un-certainty, and partial truth to achieve tractability, robust-
ness, and low solution cost. Intended areas of application
are manifold: we think on automatic operation, optimiza-
tion of the operating conditions and yields; applied to vari-
ous stages in the processing of circular and linear accelera-
tors. As a first step towards this goal a fuzzy control system
for a transfer channel in a particle accelerator has been de-
veloped. For it we built up the machinery, i.e. algorithms,
data structures, integration in the existing control system
and did a first proof-of-concept. Special emphasis is given
on handling high dimensional data streams and the imma-
nent challenges as sparsity and equidistance of the data.

INTRODUCTION
Model-based techniques for process control can provide

valuable advantage over conventional approaches. They
may yield a better understanding of the underlying system
behavior than pure black box models and offer the oppor-
tunity to directly include expert knowledge. Such models,
however, are costly to build and maintain when manually
designed. Furthermore, they usually need to be continu-
ously adapted since process conditions may change dynam-
ically. Because of that evolving data-driven models with
automatic adaptation techniques are becoming more and
more attractive since they reduce maintenance costs while
keeping high precision and interpretability.

Such a system that learns and evolves with every single
sample from the data stream shall be developed for the use
in a particle accelerator. A special problem here is the high
dimensionality and homogeneity of the incoming data. For
it, an additional projection step is implemented to reduce
the dimensionality and filter out the most interesting ones.

Key ideas of the algorithm and the state of the work in
progress are to be presented in the following. First we out-
line the current area of application within the DESY parti-
cle accelerator complex and sketch the algorithm’s overall
structure. In the following sections essentials of adaptive,
i.e. evolving fuzzy systems are introduced and the projec-
tion mechanism is presented.

AREA OF APPLICATION
As a sandbox for its initial release the 450 MeV elec-

tron/positron transfer line between the accelerators PIA and
DESY II within the pre-accelerator chain for PETRA III
has been chosen. This decision was motivated by the ideal

Figure 1: Particle accelerators at DESY.

test condition, since tests can be carried out parasitically
to the regular operation at a quite high beam transfer fre-
quency of 6 Hz. For a short overview over the DESY facil-
ity (Fig. 1) and its accelerators see [1]. The fuzzy control
algorithms were integrated into the TINE-based accelerator
control system via MATLAB codes.

OVERALL STRUCTURE OF THE
CONTROL ALGORITHM

A modern method for the control of complex processes
is model predictive control (MPC), also referred to as re-
ceding horizon control (RHC)[2, 3]. Model predictive con-
trol uses a time-discrete dynamic model of the process to
be controlled to calculate its future states and output values
as a function of the input signals. Using this prediction, in
particular suitable input signals for desired output values
can be found. While the model behavior will be predicated
several steps ahead till a certain time frame, the input signal
is usually only searched for the next time step and then the
optimization is repeated. For the calculations of the next
time step then the actual measured state is used, resulting in
a feedback and thus a closed loop. Model predictive control
technology offers a number of advantages that have made
it one of the most widely used advanced control methods
in the process industry. It can calculate control variables
where classical nonlinear control techniques fail, is easily
extended to multivariable problems, can take restrictions on
the actuators into account, permits the operation near the
constraints, allows a flexible specification of the objective
function, delivers optimum control devices and is last not
least model based. A typical controller structure to build a
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Figure 2: Internal model control scheme.

model predictive controller is shown in Figure 2.

EVOLVING TAKAGI-SUGENO FUZZY
MODEL

In the present work, the model shown in Figure 2 is
a fuzzy one. Fuzzy set theory provides structured ways
of handling uncertainties, ambiguities, and contradictions
which made systems based on fuzzy set theory the ap-
proach of choice in many situations. Since its introduction
in 1965 [4], fuzzy set theory has found applications in a
wide variety of disciplines. Modeling and control of dy-
namic systems belong to the fields in which fuzzy set tech-
niques have received considerable attention, not only from
the scientific community but also from industry. Their ef-
fectiveness together with their ease of use compared to sys-
tems based on classical two-valued logic paved the way to
countless practical applications of fuzzy systems.

Compared with other control strategies, e.g. based on
neural networks, the use of fuzzy models offers significant
advantages: Already existing expertise can be directly fed
into the system, in contrast to neural networks the knowl-
edge is explicitly, thus self-explanatory and the acceptance
of the procedure higher.

The modeling and control of nonlinear systems using
fuzzy concepts is described in [5]. Current methods for
identification are data-extraction techniques on the one
hand and expertise on the other, but also mixed forms of
both approaches. Basis of the data-driven approach is a
clustering algorithm whereby fuzzy models are derived,
preferably of the Takagi-Sugeno (TS) type [6].

A Takagi-Sugeno fuzzy model is characterized by its
crisp, most often linear functions in the consequent part.
Thus, it combines linguistic and mathematical regression
modeling in one. The antecedents describe fuzzy regions
in the input space in which the consequent functions are
valid. The TS rules take the following form:

Ri: If ~x is Ai then ŷi = f̂i(~x); i = 1, . . . , C. (1)

Formally, the underlying Takagi-Sugeno fuzzy system
with its multiple input variables (x1, . . . , xp), one single
output variable y, and C rules can be defined as follows:

f̂(~x) = ŷ =

C∑
i=1

liΨi(~x) (2)

with normalized Gaussian membership functions

Ψi(~x) =
exp

(
− 1

2

∑p
j=1

(xj−cij)2
σ2
ij

)
∑C
k=1 exp

(
− 1

2

∑p
j=1

(xj−ckj)2

σ2
kj

) (3)

and consequent functions

li = wi0 + wi1x1 + · · · + wipxp, (4)

where xj denotes the jth input variable, cij the center, and
σij the width of the Gaussian fuzzy set in the jth premise
part of the ith rule.

In principal, learning in this setting can be implemented
in two places: a) fuzzy-rule-based structure design and b)
parameter identification of the rules consequents. The rule
base may evolve in the number of rules C and the number
of fuzzy sets per input dimension, each premise in turn in
its center cij and width σij . Consequent parameter estima-
tion is realized via the output weights wi0, . . . , wip.

Evolving Fuzzy Model
As already mentioned, the fuzzy model in the kernel of

the controller shall evolve over time as data samples arrive
from the data stream. Several algorithms have been pro-
posed for this use case, e.g. the FLEXFIS model [7] or the
eSensor approach [8]. Generally speaking – while varying
in details – all of these approaches follow the same main
idea to partition the learning problem into the subproblems
structure identification and consequent-parameter estima-
tion. The first subproblem is usually approached using
some clustering technique in the data space. This parti-
tioning creates basic information granules, described lin-
guistically by fuzzy sets, that transform the raw data into
primitive forms of knowledge. For the second subproblem
typically some form of weighted recursive least squares al-
gorithm (WRLS) is applied to estimate the output weights
per rule. In general, our implementation is inspired by the
eSensor approach with some major modifications in the
data preprocessing phase (see next Section).

As can be seen in Figure 3 the fuzzy rule base of the
controller works in two main modes, the calibration and
estimation mode depending on the kind of data sent to the
model. If the input data comes with measured output data
the evolving fuzzy model uses both to recalibrate the actual
model. In case of input data coming alone, the output is
estimated by the fuzzy model.

PROJECTED CLUSTERING OF HIGH
DIMENSIONAL DATA

The input data stream of the given problem consists of
measurements of the several devices in the accelerator and
is hence high-dimensional in nature. High-dimensional
data however is inherently more complex in clustering,
classification, and similarity search. Among others this is
because of the sparsity of the data in the high-dimensional
case. Moreover, in high-dimensional space, all pairs of
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Figure 3: Calibration and estimation flowchart of the evolv-
ing Takagi-Sugeno fuzzy model.

points tend to be almost equidistant from one another. This
makes it difficult for common distance-based clustering al-
gorithms to find meaningful clusters.

An algorithm tailored to this domain is the HPStream al-
gorithm [9]. It implements a high-dimensional projected
stream clustering by continuous refinement of the set of
projected dimensions during the progression of the stream.
Dimensions to be projected are selected depending on the
variance of the data in it. Those with the smallest variance
are chosen. The updating of the set of dimensions asso-
ciated with each cluster is performed in such a way that
the points and dimensions associated with each cluster can
effectively evolve over time.

We use a methodology inspired by the HPStream algo-
rithm to preprocess the high dimensional data stream. It
differs in one essential way from its model in that it prefers
dimensions with high to small variance. This is due to the
rather unconventional environment the algorithm is used in.
Measurements are in most dimensions more or less con-
stant. Since the original projection mechanism clusters data
samples with the highest similarity it would mask out the
few dimensions in which variations happen. The modifica-
tion aims at finding the dimensions with high ‘liveliness’.

CURRENT STATUS
Currently the core algorithms with its data structures

have been developed and integrated in the existing control
system. Critical turned out to be the model building due
to the special nature of the data. With the eSensor concept
no meaningful model could be achieved. Either only one
single cluster was created for all incoming data samples
or every sample made up a new own cluster. Transition

between both states turned out to be extreme sharp. Con-
figuring the algorithms parameter such that a meaningful
number of clusters is maintained was not possible.

Because of this the projection mechanism has been in-
tegrated. With it a configurable number of fuzzy clusters
can be supported. The problem than has shifted to the poor
extrapolation quality of the model. The optimization al-
gorithm that evaluates the model in order to find the next
control variables is miss leaded by the linear consequent
functions to the borders of the domain. For this reason the
current work focuses on the integration of a confidence fac-
tor in the blending procedure of the consequent functions.

CONCLUSION
Presented has been an architecture that addresses the de-

sign of an adaptive fuzzy model predictive control system,
comprising a data stream driven evolving fuzzy model with
data projection mechanism to reduce the input dimension-
ality and an optimization component to find optimal control
quantities.
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