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Abstract 

Distributed system protocol verification has the 
intrinsic problem in mechanizing the reasoning pattern 
and the resultant state space exploration. The former 
arises in case of theorem proving approach due to the 
ingenuity involved in constructing a proof and the latter is 
encountered in model checking approach while carrying 
out composition of a large number of processes that 
constitute a typical distributed system. A combined 
approach of the above two methods has been devised that 
eventually considers the reachability in finite distributed 
system protocol model. It computes the reachability in 
backward traversal on the fly. In this paper a C++ 
implementation of the on-the-fly backward traversal 
algorithm is reported. 

INTRODUCTION 
A wide class of distributed system protocols comprises 

a large no. of identical processes, each with an identical 
behaviour having finite state-space. Behaviour of each of 
the processes can be captured by a state transition 
diagram defined in terms of a FSM structure. Since a 
distributed system model is having a state-space of the 
order mn where m is the state-space of an individual 
constituent process and n is the number of constituent 
processes which is typically few hundreds. Due to this 
state-space explosion [1, 2] while composing the FSMs 
for large number of processes, the reachability analysis 
suffers from large computational complexity.  The 
framework [3] explores the merits of tableau proof 
framework and devises a new backward traversal 
algorithm to improvise a completely mechanized 
verification technique containing the state-space 
explosion problem for distributed system protocols 
having identical participants. In [3] the observation is 
made that if a flat composition can be avoided and 
selective composition, as and when necessary, can be 
computed, then the state-space explosion can be 
contained to a great extent.  In this paper, we present a 
C++ implementation of the backward traversal process 
which basically tests on-the fly the reachability of an 
atomic predicate in a given distributed system protocol 
model. 

 
The paper is organized in the following way: Section 2 

briefly explains the C++ implementation details of the 
Modified Backward Traversal Algorithm followed by an 
example of the implementation of the Backward Traversal 
Algorithm in the Section 3. 

A C++ IMPLEMENTATION OF THE 
BACKWARD TRAVERSAL FOR LEADER 

ELECTION PROTOCOL 

Data Structure Used in the Modified Algorithm 
1. Class Table - In this program, for the FSM (Finite State 

Machine) structure of the processes, we take the input 
from fsm.data file and have stored it in thee class Table. 
The class Table contains static vector containers 
(dynamic lists) those store the state, transition, guard 
and action conditions of the transitions as state, 
transition, guard and action objects respectively   

2. Class Network - To store the Network structure of the 
Distributed system, we have used class Network to 
store the input from the NetworkFile.data 

3. Class triplet - To store the Triplet node that contains a 
node’s information in the form, <EndState, Process, 
TransitionIndex> we have declared the class triplet. In 
the class Table, there is a static vector <triplet> Triplet 
list that stores all the nodes of the computational paths.  

4. Class tranCont - The class tranCont stores index of two 
transitions (in vector<transition> Table::transitions) 
those are contradictory to each other. The static 
vector<tranCont> Table::TranContradiction stores all 
the contradictory transition pairs of the system. 

5. Class stateCont - The class stateCont stores index of 
two states (in vector<state> Table::states) those are 
contradictory to each other. The static 
vector<stateCont> Table::StateContradiction stores all 
the contradictory state pairs for any process of the 
system. 

6. Class stReachability – The class stReachability stores 
the lists of states of each process that has been reached 
so far. This helps to check if for any computational 
path, a process’s current state contradicts with the states 
that had been so far reached by that process. This keeps 
track of the process’s states so that if there is any state 
contradiction, then the path can be flagged as invalid. 

Functional Construct of the Modified Backward 
Traversal Algorithm 

Let ξ be the set of states where atomic predicate ¬pi 
holds. For each sj  ξ, construct a backward forest by 
invoking the functions: 

 
1. i) FSM * fsm= new  FSM("/home/.... /fsm.data"); // 

Creates objects of the FSM class taking input from 
fsm.data file 
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 ii)Network* net=new  Network("/home/…./ 
networkFile.data"); // Creates objects of the Network 
class taking input from networkFile.data file 
 iii) Forest::Forest (FSM * fsm); // Create object of the 
Forest class passing FSM object. 

2.  i) void   Forest::createRootNodes( atomicPredicate AP, 
Network *net); // Checks at which states 
atomicPredicate AP holds by calling the function 
vector<int> FSM::statesAPHolds( atomicPredicate 
AP); and create Triplet Root nodes (in the form 
<EndState, Process, TransitionIndex>) for each of these 
states. 
 ii) vector<int> Class triplet::childIndex; // Stores the 
index of child nodes in  Table::Triple with parentIndx 
field that stores index of the parents of these child 
nodes.  

3.  i) void Forest::insert_Contradiction(Network * net); // 
Checks for contradictory states pairs and transition 
pairs by calling the function bool transition:: 
find_Contradiction(transition& x);  and stores in 
Table::StateContradiction and TranContradiction; 
respectively. 
 ii) bool transition::find_Contradiction(transition& x); // 
Calls the function action::compare_Contradiction(guard 
grdCond); to check if Action of transition Ti contradicts 
with Guard of transition Tj. 

4.  void  Forest::initPath(Network * net); //  Creating 
children of the Root Triplets nodes based on message 
passing. 

5. void   Forest::createPath(Network * net) –  
i) This function is recursively creating the children of 
the leaf triplet nodes (with childIndx.size()==0 ). This 
function creates child tripletNode similarly as the 
previous function void Forest::initPath(Network * net) 
but in a recursive way until all the tree branches close 
with initial states S1. As it is an Inverted path, the 
triplet <EndState, processId, TransitionId> contains the 
end state of the transition, so to find the initial state, we 
are looking for transition T1 (tranId==0), which will 
lead to the initial state S1.  
ii) While creating each new child node (Figure 4), this 
function checks if the transition pair of parent and child 
triplet node, is a contradictory transition pairs. 
iii) After all the inverted paths (from final state to initial 
state) are created, we check the list Table::Triplet to 
find a triplet node representing initial state (i.e. 
transition id==0 and end state==1) and store the index 
of these triplet nodes with initial state in a list 
vector<int> PathRoot[2].  
iv) bool Forest::checkSt(int es, int pno) – While 
creating this inverted paths, in every node, we check the 
States reached by that process in the triplet node, by 
calling the function bool Forest::checkSt(int es, int 
pno). If there is any contradictory state reached, we 
discard that path by setting a flag, and if no 
contradictory state has been reached, then we store the 
new state of that process in the new child triplet node in 
the list Table::StateReached  

6. This algorithm ends when all the branches of the triplet 
trees are closed.  

Implementation Difficulties 
During the implementation of the Backward Traversal 

Algorithm [3], following difficulties were faced.  
1. This algorithm [3] is modelling a distributed scenario. 

Each tree node has a list of pointers to his child nodes 
and a pointer to its parent node. If we implement the 
algorithm exactly the way it is, then we have to move 
back and forth between parent and child nodes again 
and again to update the composite state of the current 
node, depending upon the value of the composite state 
of either the child node or the parent node of the current 
tree node and the vice versa. These increase the 
complexity of the program with the increase in the 
number of processes in the system.  

2.  During the Step 4. Refine Parents, and Step 6. Refine 
Ancestor [3], there can be more than one possible state 
in which a process can be, and if that is the case, then a 
node can have more that one incarnation. This causes 
the updating of not only those nodes, but also updating 
of the all the parent pointer information in all there 
child nodes and the child pointer information in the 
parent nodes of the newly incarnated nodes, and 
creation of new edges from that node to all its parent 
and child nodes. These situations cause the original tree 
to branch out and may split to create forests.   

3. Using the child node pointers, it is easy to traverse 
downward in the computational tree branches, but it is 
complicated to traverse upward in the tree branches 
using parent pointers. So in case of a split in the 
computational branch, it becomes difficult to update all 
the composite states of the newly created branches or 
trees of the forest. 

4. Here in this algorithm each node has a composite state, 
where each process in the system is in some state. But 
to find the reachability, we don’t need the state 
information of all the processes at each node, for all 
possible tree branches as, in the future steps most of 
these branches would be purged. 

CASE STUDY: AN UNIDIRECTIONAL 
RING WITH THREE PROCESSES 

To find out the reachability of state where the atomic 
predicate L(2) holds, we start with the triplet state of the 
form   <State_Id, Process_Id, Transition_Id> where L(2) 
holds. From Figure 1 we notice that S4 and S5 are the 
only such states for which L(2) holds, and for state S4 and 
S5 the respective enabled transitions are T4   and T5. So 
we start with two Root Triplet nodes N1 = < S4, 2, T4 > 
and N2 = < S5, 2, T5 > from which the backward 
traversal has to be taken up.  

Step 1: Create Roots: Designate the Roots as N1 = < 
S4, 2, T4 > and N2 = < S5, 2, T5 >.                                         

Step 2: Initialize the Paths: From Figure 2 we can see 
that action of transition T4 of process 2 enables the guard 
condition of transition T2 of the neighbouring Process 1 
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with state S2. Similarly action of transition T5 of Process 
2 enables the guard condition of transition T3 and T4 of 
the neighbouring Process 1 with state S3 and S4 
respectively. This creates child Triplet node N3 = < S2, 1, 
T2 > of node N1 and child Triplet node N4 = < S3, 1, T3> 
and N5 = < S4, 1, T4 > of node N2.  

Figure 1: Step 2 Initialize the Paths.     

 
Figure 2: Step 3 Create Paths. 

Step 3: i) Create Paths: Now similar to the previous 
step we keep creating children of the leaf nodes in the 
branches. So we create the child nodes of node N3, N4 
and N5. While creating children of the leaf node, we find 
that from node N5 = < S4, 1, T4 > no child node can be 
created as the action of transition T4 of process 1 (in node 
N5) do not enables the guard condition of any transition 
without creating contradiction. So this branch with leaf 
node N5 is closed unsuccessfully. This creates child 
Triplet node N6 = < S2, 0, T2 > of node N3 and child 
Triplet node N7 = < S3, 0, T3> of node N4.  

Step 3.i): Now we keep creating the child nodes of the 
leaf nodes in an iterative way, until the branches are 
successfully or unsuccessfully closed. The child node of 
N6 is N8 = < S2, 2, T1 > and N9 = < S2, 2, T2 > and 
child node of N7 is N10 = < S4, 2, T4 >. Here the branch 
with leaf node N8 is closed successfully as the Process 2 
is in state S2 with transition T1 which will change the 
Process 2’s state to initial state S1. So this branch is 
closed successfully (Figure 3). 

Path 1:  <S2, 2, T1> -> <S2, 0, T2> -> <S2, 1, T2> -> 
<S4, 2, T4> 

Step 3.ii): Similarly we find that the branches with leaf 
node N15 = < S2, 2, T1 > and   N16  = < S2, 2, T1 > are 
also closed successfully |(Figure 5). 

Path 2:  <S2, 2, T1> -> <S2, 0, T2> -> <S2, 1, T2> -> 
<S2, 2, T2> -> <S2, 0, T2> -> <S2, 1, T2> -> <S4, 2, T4> 

Path 3:  <S2, 2, T1> -> <S2, 0, T2> -> <S2, 1, T2> -> 
<S4, 2, T4> -> <S3, 0, T3> -> <S3, 1, T3> -> <S5, 2, T5> 

Figure 3: Path 1 successfully closed. 
 

 

Figure 4: Creating Child Nodes N11 and N12. 

Step 4:  In this Backward Traversal is three 
computational paths are identified, Path 1, 2 and 3. There 
are also other paths but the Paths 1, 2 or 3 will be 
subsumed in those paths requirements.  
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Figure 5: Path 2 & 3 are successfully closed. 
                         

CONCLUSION AND FUTURE SCOPE 
In this paper we have implemented the modified 

algorithm to avoid the complexities of creating the 
composite states and composite transitions for each node 
of the tree branch. This program can verify the LEP 
protocol for any finite number of processes. 

But it has some limitations. This method works only for 
LCP problem with no internal variables. In future, to 
make it work for any Distributed System Protocols we 
need to make this program more general. To take care of 
the internal variables, we can create a global static array 
(of size equal to the number of processes) that can store 
the internal variable values for each process, so that it will 
work for algorithms like Flood-Max algorithm, or HS 
Algorithm containing some internal variables for each 
process. In future work, we also need to modify the 
function comparing the Guard and Action conditions of 
the transitions to work it for different protocols. 
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