

REACHABILITY IN A FINITE DISTRIBUTED SYSTEM PROTOCOL
MODEL BY BACKWARD TRAVERSAL

Tapas Samanta,VECC, Kolkata, India
Dipankar Sarkar, IIT, Kharagpur, India

Samarpita Mukherjee, Jadavpur University, India
Abstract

Distributed system protocol verification has the
intrinsic problem in mechanizing the reasoning pattern
and the resultant state space exploration. The former
arises in case of theorem proving approach due to the
ingenuity involved in constructing a proof and the latter is
encountered in model checking approach while carrying
out composition of a large number of processes that
constitute a typical distributed system. A combined
approach of the above two methods has been devised that
eventually considers the reachability in finite distributed
system protocol model. It computes the reachability in
backward traversal on the fly. In this paper a C++
implementation of the on-the-fly backward traversal
algorithm is reported.

INTRODUCTION
A wide class of distributed system protocols comprises

a large no. of identical processes, each with an identical
behaviour having finite state-space. Behaviour of each of
the processes can be captured by a state transition
diagram defined in terms of a FSM structure. Since a
distributed system model is having a state-space of the
order mn where m is the state-space of an individual
constituent process and n is the number of constituent
processes which is typically few hundreds. Due to this
state-space explosion [1, 2] while composing the FSMs
for large number of processes, the reachability analysis
suffers from large computational complexity. The
framework [3] explores the merits of tableau proof
framework and devises a new backward traversal
algorithm to improvise a completely mechanized
verification technique containing the state-space
explosion problem for distributed system protocols
having identical participants. In [3] the observation is
made that if a flat composition can be avoided and
selective composition, as and when necessary, can be
computed, then the state-space explosion can be
contained to a great extent. In this paper, we present a
C++ implementation of the backward traversal process
which basically tests on-the fly the reachability of an
atomic predicate in a given distributed system protocol
model.

The paper is organized in the following way: Section 2

briefly explains the C++ implementation details of the
Modified Backward Traversal Algorithm followed by an
example of the implementation of the Backward Traversal
Algorithm in the Section 3.

A C++ IMPLEMENTATION OF THE
BACKWARD TRAVERSAL FOR LEADER

ELECTION PROTOCOL

Data Structure Used in the Modified Algorithm
1. Class Table - In this program, for the FSM (Finite State

Machine) structure of the processes, we take the input
from fsm.data file and have stored it in thee class Table.
The class Table contains static vector containers
(dynamic lists) those store the state, transition, guard
and action conditions of the transitions as state,
transition, guard and action objects respectively

2. Class Network - To store the Network structure of the
Distributed system, we have used class Network to
store the input from the NetworkFile.data

3. Class triplet - To store the Triplet node that contains a
node’s information in the form, <EndState, Process,
TransitionIndex> we have declared the class triplet. In
the class Table, there is a static vector <triplet> Triplet
list that stores all the nodes of the computational paths.

4. Class tranCont - The class tranCont stores index of two
transitions (in vector<transition> Table::transitions)
those are contradictory to each other. The static
vector<tranCont> Table::TranContradiction stores all
the contradictory transition pairs of the system.

5. Class stateCont - The class stateCont stores index of
two states (in vector<state> Table::states) those are
contradictory to each other. The static
vector<stateCont> Table::StateContradiction stores all
the contradictory state pairs for any process of the
system.

6. Class stReachability – The class stReachability stores
the lists of states of each process that has been reached
so far. This helps to check if for any computational
path, a process’s current state contradicts with the states
that had been so far reached by that process. This keeps
track of the process’s states so that if there is any state
contradiction, then the path can be flagged as invalid.

Functional Construct of the Modified Backward
Traversal Algorithm

Let ξ be the set of states where atomic predicate ¬pi
holds. For each sj ξ, construct a backward forest by
invoking the functions:

1. i) FSM * fsm= new FSM("/home/.... /fsm.data"); //

Creates objects of the FSM class taking input from
fsm.data file

THPD48 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

230C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Verification and Validation of Control System Design

 ii)Network* net=new Network("/home/…./
networkFile.data"); // Creates objects of the Network
class taking input from networkFile.data file
 iii) Forest::Forest (FSM * fsm); // Create object of the
Forest class passing FSM object.

2. i) void Forest::createRootNodes(atomicPredicate AP,
Network *net); // Checks at which states
atomicPredicate AP holds by calling the function
vector<int> FSM::statesAPHolds(atomicPredicate
AP); and create Triplet Root nodes (in the form
<EndState, Process, TransitionIndex>) for each of these
states.
 ii) vector<int> Class triplet::childIndex; // Stores the
index of child nodes in Table::Triple with parentIndx
field that stores index of the parents of these child
nodes.

3. i) void Forest::insert_Contradiction(Network * net); //
Checks for contradictory states pairs and transition
pairs by calling the function bool transition::
find_Contradiction(transition& x); and stores in
Table::StateContradiction and TranContradiction;
respectively.
 ii) bool transition::find_Contradiction(transition& x); //
Calls the function action::compare_Contradiction(guard
grdCond); to check if Action of transition Ti contradicts
with Guard of transition Tj.

4. void Forest::initPath(Network * net); // Creating
children of the Root Triplets nodes based on message
passing.

5. void Forest::createPath(Network * net) –
i) This function is recursively creating the children of
the leaf triplet nodes (with childIndx.size()==0). This
function creates child tripletNode similarly as the
previous function void Forest::initPath(Network * net)
but in a recursive way until all the tree branches close
with initial states S1. As it is an Inverted path, the
triplet <EndState, processId, TransitionId> contains the
end state of the transition, so to find the initial state, we
are looking for transition T1 (tranId==0), which will
lead to the initial state S1.
ii) While creating each new child node (Figure 4), this
function checks if the transition pair of parent and child
triplet node, is a contradictory transition pairs.
iii) After all the inverted paths (from final state to initial
state) are created, we check the list Table::Triplet to
find a triplet node representing initial state (i.e.
transition id==0 and end state==1) and store the index
of these triplet nodes with initial state in a list
vector<int> PathRoot[2].
iv) bool Forest::checkSt(int es, int pno) – While
creating this inverted paths, in every node, we check the
States reached by that process in the triplet node, by
calling the function bool Forest::checkSt(int es, int
pno). If there is any contradictory state reached, we
discard that path by setting a flag, and if no
contradictory state has been reached, then we store the
new state of that process in the new child triplet node in
the list Table::StateReached

6. This algorithm ends when all the branches of the triplet
trees are closed.

Implementation Difficulties
During the implementation of the Backward Traversal

Algorithm [3], following difficulties were faced.
1. This algorithm [3] is modelling a distributed scenario.

Each tree node has a list of pointers to his child nodes
and a pointer to its parent node. If we implement the
algorithm exactly the way it is, then we have to move
back and forth between parent and child nodes again
and again to update the composite state of the current
node, depending upon the value of the composite state
of either the child node or the parent node of the current
tree node and the vice versa. These increase the
complexity of the program with the increase in the
number of processes in the system.

2. During the Step 4. Refine Parents, and Step 6. Refine
Ancestor [3], there can be more than one possible state
in which a process can be, and if that is the case, then a
node can have more that one incarnation. This causes
the updating of not only those nodes, but also updating
of the all the parent pointer information in all there
child nodes and the child pointer information in the
parent nodes of the newly incarnated nodes, and
creation of new edges from that node to all its parent
and child nodes. These situations cause the original tree
to branch out and may split to create forests.

3. Using the child node pointers, it is easy to traverse
downward in the computational tree branches, but it is
complicated to traverse upward in the tree branches
using parent pointers. So in case of a split in the
computational branch, it becomes difficult to update all
the composite states of the newly created branches or
trees of the forest.

4. Here in this algorithm each node has a composite state,
where each process in the system is in some state. But
to find the reachability, we don’t need the state
information of all the processes at each node, for all
possible tree branches as, in the future steps most of
these branches would be purged.

CASE STUDY: AN UNIDIRECTIONAL
RING WITH THREE PROCESSES

To find out the reachability of state where the atomic
predicate L(2) holds, we start with the triplet state of the
form <State_Id, Process_Id, Transition_Id> where L(2)
holds. From Figure 1 we notice that S4 and S5 are the
only such states for which L(2) holds, and for state S4 and
S5 the respective enabled transitions are T4 and T5. So
we start with two Root Triplet nodes N1 = < S4, 2, T4 >
and N2 = < S5, 2, T5 > from which the backward
traversal has to be taken up.

Step 1: Create Roots: Designate the Roots as N1 = <
S4, 2, T4 > and N2 = < S5, 2, T5 >.

Step 2: Initialize the Paths: From Figure 2 we can see
that action of transition T4 of process 2 enables the guard
condition of transition T2 of the neighbouring Process 1

Proceedings of PCaPAC2012, Kolkata, India THPD48

Verification and Validation of Control System Design

ISBN 978-3-95450-124-3

231 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

with state S2. Similarly action of transition T5 of Process
2 enables the guard condition of transition T3 and T4 of
the neighbouring Process 1 with state S3 and S4
respectively. This creates child Triplet node N3 = < S2, 1,
T2 > of node N1 and child Triplet node N4 = < S3, 1, T3>
and N5 = < S4, 1, T4 > of node N2.

Figure 1: Step 2 Initialize the Paths.

Figure 2: Step 3 Create Paths.

Step 3: i) Create Paths: Now similar to the previous
step we keep creating children of the leaf nodes in the
branches. So we create the child nodes of node N3, N4
and N5. While creating children of the leaf node, we find
that from node N5 = < S4, 1, T4 > no child node can be
created as the action of transition T4 of process 1 (in node
N5) do not enables the guard condition of any transition
without creating contradiction. So this branch with leaf
node N5 is closed unsuccessfully. This creates child
Triplet node N6 = < S2, 0, T2 > of node N3 and child
Triplet node N7 = < S3, 0, T3> of node N4.

Step 3.i): Now we keep creating the child nodes of the
leaf nodes in an iterative way, until the branches are
successfully or unsuccessfully closed. The child node of
N6 is N8 = < S2, 2, T1 > and N9 = < S2, 2, T2 > and
child node of N7 is N10 = < S4, 2, T4 >. Here the branch
with leaf node N8 is closed successfully as the Process 2
is in state S2 with transition T1 which will change the
Process 2’s state to initial state S1. So this branch is
closed successfully (Figure 3).

Path 1: <S2, 2, T1> -> <S2, 0, T2> -> <S2, 1, T2> ->
<S4, 2, T4>

Step 3.ii): Similarly we find that the branches with leaf
node N15 = < S2, 2, T1 > and N16 = < S2, 2, T1 > are
also closed successfully |(Figure 5).

Path 2: <S2, 2, T1> -> <S2, 0, T2> -> <S2, 1, T2> ->
<S2, 2, T2> -> <S2, 0, T2> -> <S2, 1, T2> -> <S4, 2, T4>

Path 3: <S2, 2, T1> -> <S2, 0, T2> -> <S2, 1, T2> ->
<S4, 2, T4> -> <S3, 0, T3> -> <S3, 1, T3> -> <S5, 2, T5>

Figure 3: Path 1 successfully closed.

Figure 4: Creating Child Nodes N11 and N12.

Step 4: In this Backward Traversal is three
computational paths are identified, Path 1, 2 and 3. There
are also other paths but the Paths 1, 2 or 3 will be
subsumed in those paths requirements.

THPD48 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

232C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Verification and Validation of Control System Design

Figure 5: Path 2 & 3 are successfully closed.

CONCLUSION AND FUTURE SCOPE
In this paper we have implemented the modified

algorithm to avoid the complexities of creating the
composite states and composite transitions for each node
of the tree branch. This program can verify the LEP
protocol for any finite number of processes.

But it has some limitations. This method works only for
LCP problem with no internal variables. In future, to
make it work for any Distributed System Protocols we
need to make this program more general. To take care of
the internal variables, we can create a global static array
(of size equal to the number of processes) that can store
the internal variable values for each process, so that it will
work for algorithms like Flood-Max algorithm, or HS
Algorithm containing some internal variables for each
process. In future work, we also need to modify the
function comparing the Guard and Action conditions of
the transitions to work it for different protocols.

REFERENCES

[1] Gerard Tel, “Introduction to Distributed Algorithms”,
ISBN-10: 0521794838, ISBN 13: 978-0521794831,
October 2000.

 [2] N. A. Lynch, “Distributed Algorithms”, 1948, ISBN-
13:978-1-55860-348-6 ISBN-10:1-55860-348-4.

 [3] Tapas Samanta and D. Sarkar, “Distributed System
Protocol Verification: A Tableau Based Model
Checking Approach”, Computer and Communication
Technology (ICCCT), 2011, 2nd International
Conference on: 246 – 252, 15-17 Sept. 2011, ISBN:
978-1-4577-1385-9.

Proceedings of PCaPAC2012, Kolkata, India THPD48

Verification and Validation of Control System Design

ISBN 978-3-95450-124-3

233 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

