
Qt BASED GUI SYSTEM FOR EPICS CONTROL SYSTEMS*

A. Rhyder , R. N. Fernandes, A. Starritt, Australian Synchrotron, Clayton 3168, Australia#

Abstract
The Qt-based GUI system developed at the Australian

Synchrotron for use on EPICS control systems has
recently been enhanced to including support for imaging,
plotting, user login, logging and configuration recipes.
Plans are also being made to broaden its appeal within the
wider EPICS community by expanding the range of
development options and adding support for EPICS V4.
Current features include graphical and non-graphical
application development as well as simple “code-free”
GUI design. Additional features will allow developers to
let the GUI system handle its own data using Qt-based
EPICS-aware classes or, as an alternative, use other
control systems data such as PSI’s CAFE.

INTRODUCTION

The Qt-based GUI system, known as QE framework or
simply QE, is a layered framework based on C++ and Qt
for accessing EPICS data using Channel Access (CA). It
is used on several beamlines at the Australian
Synchrotron. Channel Access is one of the core
components of an EPICS system allowing a CA client
application to access control system data which may be
located on different hosts throughout a network [1]. While
CA is the default means to access EPICS data, its use is
not trivial. A significant understanding on how this
component works is required to read or write data. The
complexity of setting up and terminating CA requests
leaves room for error. The QE framework handles much
of this complexity including initiating and managing a
channel. Applications using QE can interact with Channel
Access using Qt-based classes and data types. CA updates
are delivered using Qt signals and slots mechanism. It
provides access to EPICS data at several levels including
programmatic reading and writing of data, EPICS-aware
widgets such as push buttons, sliders and text widgets for
developing GUI applications [2]. When these plugins are
used within Qt Designer, GUIs interacting with EPICS
can quickly be assembled without the need for any code
development by meaning of simple drag & drop
operations.

FRAMEWORK OVERVIEW

The QE framework allows access to Channel Access
graphically through Qt-based widgets or through Qt
friendly data objects. The data objects manage Channel
Access connections and provide a simple, comprehensive,
object oriented view of the CA data and related attributes.
The QE graphical widgets and supporting QE data objects

form a hierarchy of classes that is open at all levels to the
developer. Appropriate use of these classes is shown in
Table 1. Also, the framework includes an application,
QEGui, which is available to present control centric Qt
user interface files.

Table 1: QE framework classes and their functionality.

Classes Functionality

Data objects:

 QEObject

 QEInteger

 QEString

 QEFloating

Provides a convenient object
oriented way to access the CA
library. Hides CA specific
complexity and provides
read/write conversions to and
from EPICS data types where
required. Adds Qt features such
as signals and slots to handle data
updates. These classes are used
programmatically.

Standard widgets:

 QEComboBox

 QEForm

 QEFrame

 QEGroupBox
 QELabel
 QELineEdit

 QEPushButton

 QERadioButton

 QESlider

 QESpinBox

Graphical objects that allow
users to interact with CA data
using simple and familiar
graphical controls. These classes
may be used programmatically or
within Qt Designer.

Extended widgets:

 QEAnalogProgressBar

 QEBitStatus

 QEConfiguredLayout
 QEFileBrowser
 QEImage

 QELink

 QELog

 QELogin
 QEPeriodic
 QEPlot

 QEPvProperties

 QERecipe
 QEScript

 QEShape

 QEStripChart

 QESubstitutedLabel

Graphical objects that allow
users to view CA data through a
broad range of display models
and support sophisticated control
system user interface design.
These classes may be used
programmatically or within Qt
Designer.

 __

*Work supported by the Australian Synchrotron
#andrew.rhyder@synchrotron.org.au

WECC03 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

10C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Latest Trends in GUI

USAGE PARADIGMS

Thanks to its architecture, the QE framework may be
used by different people and in different ways. The
simplest is as a “code free” development environment
where the user builds GUIs without the need to program
by means of dragging & dropping EPICS-aware widgets
into a graphical user interface. Each widget can be then
configured through a set of properties and inter-connected
through Qt signals to exchange data with other widgets.
All these can be done within Qt Designer in a user-
friendly fashion (see Figure 1). A single application
QEGui is used to present a set of user interface files as an
integrated control system suite.

Figure 1: QE framework within Qt Designer.

Another way of building GUIs is to use QE

programmatically (see Figure 2). This effectively allows
full control of the framework and even extends it to solve
specific issues through C++ inheritance mechanism. It
also allows the creation of non-graphical applications –
e.g. servers – interacting with CA. A complete rewrite of
the API reference documentation (generated by Doxygen)
is currently being done. It will help the developers to
better understand and use QE programmatically.

Figure 2: Using the QE framework programmatically.

FUTURE DEVELOPMENTS

The development of the QE framework has been
intense in recent months and more developments are
expected for the near future. These will produce a
framework more stable/mature capable of coping with
ever changing requirements. Some key developments
were already identified namely:
 Testing. A suite of test units will be implemented to

ensure that QE complies with the requirements. It
will guarantee that nothing breaks if the development
effort intensifies and goes beyond the Australian
Synchrotron.

 Guidelines. The specification of guidelines is crucial
as the QE framework goes towards an international
collaboration development. These guidelines will
guarantee that QE maintains its architectural and
implementation coherence even if several people are
working on it in a scattered fashion. Some of these
guidelines will be enforced through automated tests.

 Binding. More and more, the Python programming
language is becoming the “lingua franca” of the
scientific community. Plans are being made to export
the QE framework into this language through
bindings. After initial analysis of binding generators,
SIP is the chosen one to accomplish such task.

 Layering. Further abstraction/separation between
data and graphical (widgets) classes. This will allow
other control systems data to be supported by the
framework without modifying the graphical layer.

 EPICS V4. New concepts were introduced in the
latest version of EPICS such as structured data or a
new channel access protocol called pvAccess [3]. QE
will be updated to support these.

CONCLUSION

QE is a framework which enables the creation of Qt-
based GUIs interacting with EPICS data in a “code-free”
fashion or programmatically via C++. This allows GUIs
to be built by people without programming skills or by
people that need more control. Future developments will
allow the use of the framework in Python by the scientific
community. Special concern will be made to support
EPICS version 4 and its new features.

REFERENCES
[1] P. Stanley, “Channel Access Client Tutorial”, Los Alamos

National Laboratory, November 1997;
http://lansce.lanl.gov/EPICSdata/ca/client/caX5Ftutor-
4.html

[2] A. Rhyder et al., “Qt EPICS Development Framework”,
PCaPAC 2010, Saskatoon, October 2010.

[3] EPICS v4 Working Group, “pvAccess Protocol
Specification”, September 2012; http://epics-
pvdata.sourceforge.net/pvAccess_Protocol_Specification.ht
ml

Proceedings of PCaPAC2012, Kolkata, India WECC03

Latest Trends in GUI

ISBN 978-3-95450-124-3

11 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

