
THE CSS STORY
M. Clausen, J. Hatje, J. Penning, DESY, Hamburg, Germany

Abstract

Control System Studio (CSS) is designed to serve as an
integration platform for engineering and operation of
today’s process controls as well as machine controls
systems. Therefore CSS is not yet another replacement of
existing operator interfaces (OPI) but a complete
environment for the control room covering alarm
management, archived data displays diagnostic tools and
last not least operator interfaces. In addition we decided
to use CSS as the platform for the whole engineering
chain configuring EPICS based process control databases,
configuring and managing the I/O, editing state notation
programs, configuring role based access rights and many
more. Due to the ease of use of CSS as an Eclipse based
product, we decided to use the CSS core also for all our
stand alone processes. This helped us to reduce the
diversity of running products/ processes and simplified
the management. In this presentation we will describe our
experience with CSS over the last two years. How we
managed the transition from old displays to new ones,
how we changed our alarm/ message philosophy and last
not least which lessons we learned.

INTRODUCTION
The development of a new tool set was initiated by the

new project at DESY – the European XFEL. This project
will lead us through the next decades to come. All
existing hard and software for cryogenic and utility
controls had to go through a verification process to decide
whether components can pass ‘as is’ or whether they have
to go through a process of refurbishment or even new
design.

For the existing operator tools it was soon clear that
they have to be replaced by a new tool set.

NEW TECHNOLOGIES
FOR NEW OPERATOR TOOLS

To prepare the new tool set for the future it was decided
to use Java as the programming language. The next
question to be answered was: Which development
environment tool shall be used? This covers also the
question about the core technologies to be used. Two
candidates were investigated: Eclipse and NetBeans.

 At the time when Eclipse 3.1 was launched it was
chosen for the CSS core technologies. Many more basic
technology decisions had to be made. These were
identified in a workshop about three years before the first
beta release of CSS.

INITIATING COLLABORATION
As a result of the workshop the CSS collaboration was

started between the initial partners DESY and SNS. In
addition two companies were involved in the exploration
of new technologies. But what is the best way to explore
the new fields? How can one set up a contract with a
company when the details cannot be specified? We had to
walk on new ground with respect to contracting and
project management. New techniques known from
extreme programming were used to setup and run these
development projects.

WATERFALL OR XP?
This is not a question any more. Waterfall

specifications are by definition always out of date and are
outdated. But which kind of extreme programming shall
be followed? A very basic concept is working in
iterations. Iteration steps are small they last only a few
days or weeks. The work to be done in these steps is
defined in tasks. The results are checked after each
iteration step. Especially when new technologies must be
explored it is important to stay in close contact and verify
that the team is still on the right path. Waterfall – or long
iteration steps will fail in this respect.

Figure 1: The Agile Methodology ©

© Wikipedia under Creative Commons Licence

Proceedings of PCaPAC2012, Kolkata, India WEKA01

Latest Trends in GUI

ISBN 978-3-95450-124-3

1 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Identifying Risk Factors
Risk factors first – this is one of the concepts for the

iteration steps. This will make sure that those tasks which
are critical for the whole project will be dealt with at first.
Other tasks will run on a lower priority and will be solved
later. In our case we had to check whether the GEF
(graphical editing framework) will be adequate for the
new operator interface. Several criteria needed
exploration: Will it be possible to use GEF not only in
edit mode but also in runtime mode? What will the
performance of GEF dynamic widgets be? (several
thousand updates per second were specified) And – can
the layout created in the GEF editor be stored in XML
and read back in?

All of these questions were checked and answered in
several iterations throughout the development process.
Each of these was not fully implementing the full
functionality of the final product but just enough to verify
the proof of concept of the individual step. All of them
worked as a cut through the technology layers proofing
that GEF can be used as the backbone for the new
graphical user interface for the operators.

CHANGE MANAGEMENT:
PATCHWORK OR POPPER?

During the course of software maintenance and change
management one will experience several different kinds
of approaches how changes get implemented.

Patchwork
If software changes are integrated ‘on the fly’ into

existing code they will most likely be not well integrated.
Many changes will in the end destroy the initial structure
of the code base. A patchwork of adjacent code snippets
will also make testing difficult – if not impossible.

It will be very likely that such code will not be
accompanied by the required JUnit test cases. In some
cases such code might even break existing functionalities.

Popper
A well structure code will ease modifications of the

code. Even functionality/ code extensions will be easy to
integrate when well defined interfaces (popper-alike) are
foreseen in the design. Well defined interfaces are also
mandatory for good test coverage with JUnit test.

TEST TEST TEST
Test Driven Development

Writing the test code before the production code gets
written is the ideal world but the real world differs from
that. If this order does not work it is important to keep in
mind – and actually write – the test code afterwards.
Writing JUnit test code is initially as popular as writing
documentation. As soon as the benefit becomes obvious it
will be written as an integrated part of the application
code itself.

Healthy Collaborative Pressure
Any chain is as strong as the weakest link. This phrase

is also true for software packages. The bigger these
packages get the more complicated it gets to diagnose
errors and potential problems. Developing code in
collaboration with others will put a healthy pressure on all
developers to provide stable code which does not interfere
with anybody else’s implementations.

Dependencies with 3 Party Code rd

If your code is dependent from other code which is not
developed in-house it is mandatory to ‘protect’ your own
code base from that code by adding JUnit tests on your
side to detect problems when new versions of that code
(which you do not support yourself) gets committed.

CONTINUOUS INTEGRATION
Especially in a collaborative/ distributed development

environment it is necessary to check whether your final
product can still be built taking all of the latest commits
into account. A special server is set up at DESY and on
some of the other collaborator’s sites to perform this job.
It is continuously checking in all changes from the code
repository. The new code and all of the existing code will
be compiled. This method will identify code that does not
compile and also incompatibilities between different
packages. Ideally your own changes will be committed
after you have checked your code with the latest core
code from the collaboration.

Figure 2: Continuous Integration on a Jenkins Server
 @ DESY.

WEKA01 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

2C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Latest Trends in GUI

CONTINUOUS TESTING
The second step after the continuous integration of

software changes is to check for runtime errors. JUnit test
are meant to check for errors beyond compilation. While
most of the JUnit tests are typically started manually in
everybody’s own environment the intent of ‘Continuous
Testing’ is to run these test on the same server which
performs the tests after each continuous integration test.
Setting up these tests on a server platform is a complex
task especially when database servers or control system
protocols are involved. But – there is no doubt – any time
invested in testing and integration pays off in double in
time which is NOT spent in later debugging and
maintenance and in the end unhappy end users.

THE COLLABORATION TODAY
Since the early days in 2006 the collaboration has

grown. Besides DESY and SNS, BNL, ITER and KEK
have joined. The use of shared applications differs from
installation to installation. Many CSS instances are
running outside the CSS collaboration. There is no need
to become a core developer in order to actually run CSS.

SO WHAT IS CSS?
CSS can be configured in many different was. At

DESY we decided to make things as simple as possible.
So we create just one type of CSS product. Where product
means the CSS core and a rich set of plugins. All of these
files are zipped to a single zip file which can be unpacked
on the end user’s machine. In addition to these complete
packages it is also possible to just update you CSS
instance. The Eclipse update mechanism allows this kind
of incremental update when an update site is set up. At
DESY this update site is populated with the latest
versions of individual plugins. So only this selected
plugin gets its update while the rest of CSS stays the
same. The core installation with all its settings and
configuration files will not be altered.

Even though we are only providing a single kind of
CSS product, we have individual user groups which have
different views on CSS and are using completely different
sets of plugins for their work. This is possible because a
role based authentication scheme is implemented in CSS.
Logging in to CSS with Kerberos authentication will
make sure that only authorized people may perform
certain actions on the control system or make changes in
the configuration. What is CSS …

… for the Operator
The main plugins for the operator are the tools he needs

to control the equipment and to get information when
something fails. In addition he wants to look back in
history what happened at a certain time or before an event
occurred.

The typical tools are: The synoptic display SDS
(Synoptic Display Studio), the alarm toolset consisting of

the alarm table, alarm tree, message tree and archive
message table and the trend browser.

… for the Engineer
The engineer actually is using CSS to configure the

EPICS databases using the database creation tool DCT.
The EPICS records need proper addresses to read and
write from the distributed I/O system. The I/O is
configured in the I/O configurator. Sequence programs
are running in the front end controllers (IOCs – Input
Output Controller). They are actually programmed using
the state notation language (snl) editor.

All of these programs are plugins to the CSS toolkit.

… for the Developer
The developer is using the Eclipse Java IDE to create

CSS which is based on Eclipse core technology. So – it is
a toolkit to generate control system applications. Together
with the other collaborators CSS is also a collaboration.

… for the Manager
The manager finds a stable basis he can rely on. New

applications can be added easily to the CSS core. After a
steep learning curve to create the first plugin it pays off in
the following applications to come. A homogeneous look
and feel ensures that new plugins will be easily adopted
be the end user. There is no different behaviour of each
implementation.

Last not least the collaboration has already reasonable
support from industry. New developments can also be
carried out by industrial partners. The latter is a
successful practise at DESY.

SUMMARY
The CSS idea has found its way through the world of

(mostly EPICS) control system installations. The
community is slowly growing. The collaborators have
found a practical non-bureaucratic way to define and
implement incremental improvements in the CSS core
while keeping as much freedom as possible on the
individual applications.

We can be proud of this success!

ACKNOWLEDGMENT
CSS as it stands would not exist without the continuous

effort of the collaboration to make it a better product in
their day to day developments.

Thanks to the all of the collaborators!

Proceedings of PCaPAC2012, Kolkata, India WEKA01

Latest Trends in GUI

ISBN 978-3-95450-124-3

3 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

