
STARS ON ANDROID

T. Kosuge, Photon Factory, KEK, Tsukuba, Japan

Abstract
STARS (Simple Transmission and Retrieval System)

[1, 2] is a message transferring software for small-scale
control systems with a TCP/IP socket, and it works on
various types of operating systems. STARS is used as a
beamline control system for controlling the optical
devices (mirrors, monochrometers, etc.) for beamlines at
the Photon Factory.

We have succeeded in running a STARS GUI client on
Android using the STARS Java interface library. This
achievement has brought with it the capability of
developing a user-friendly GUI terminal using
smartphones or tablet devices. Such a GUI terminal will
help beamline users check movement near optical
devices.

OVERVIEW OF STARS
STARS consists of a server program (STARS server)

and client programs (STARS clients). Each client is
connected to the server through a TCP/IP socket, and
communicates using text-based messages (Fig. 1).

Figure 1: Message transfer between STARS clients and a
STARS server.

Each client program has its own unique node name, and
it sends text-based messages using the destination node
name to the server, which then delivers the messages to
the destination client. Through this extremely simple
solution, STARS is able to provide basic control system
functionality.

The STARS server program was written in Perl, and it
can therefore run on various operating systems.

BEAMLINE CONTROL SYSTEM USING
STARS

STARS has been installed in more than 20 beamlines of
the Photon Factory as a beamline control system.

Before STARS was developed, the beamlines of the
Photon Factory used various control systems (e.g., the
originally developed software, LabVIEW, or SPEC) and
the hardware was controlled using a software directory.
At that time, staff members had to prepare their own
hardware driver for each control system. Since the
installation of STARS, however, hardware drivers are
now developed by a “beamline control group,” and the
beamline control system using STARS provides a
common interface to GUI programs, etc., (Fig. 2) for
handling the beamline components. This interface can
also be accessed by various data acquisition systems.

Figure 2: Common interface for handling beamline
components using STARS.

Several types of driver software for beamline devices
and common GUI programs have recently been developed
at the Photon Factory.

STARS JAVA INTERFACE FOR ANDROID
STARS client programmers are required to use TCP/IP

sockets and handle text-based messages, and although
beginners may find it difficult, it is very easy for
programmers with prior knowledge of TCP/IP socket
programming to develop a STARS client. STARS is
equipped with interface libraries for certain programming
languages (Perl, VB, C# [3], C [4], and Java).
Programmers need not be concerned with TCP/IP socket
programming using these interface libraries. We modified
a few parts of the source code for the STARS Java
interface for Android.

DEVELOPMENT OF CLIENTS USING
STARS JAVA INTERFACE FOR ANDROID
Development Environment

We used Eclipse for the development of the STARS
client program for Android. Eclipse requires the

Proceedings of PCaPAC2012, Kolkata, India WEPD24

Latest Trends in GUI

ISBN 978-3-95450-124-3

51 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

installation of the Android SDK and the Android Plugin.
Figure 3 shows a STARS client for Android developed
using Eclipse.

Figure 3: Development of STARS client for Android
using Eclipse.

Methods
The STARS Java interface for Android was ported

from the original STARS Java interface. The same
methods used in the original interface were also used in
the ported interface, although UI (User Interface)
functions, such as Form Widgets and Text Fields, were
handled differently. This difference is described further in
the Callback Function section.

Before employing the STARS Java interface methods,
the following objects need to be defined:

import com.example.stars_control_panel.StarsInterface;
import com.example.stars_control_panel.StarsCallback;
import com.example.stars_control_panel.StarsException;
import com.example.stars_control_panel.StarsMessage;
:
:
static StarsInterface stars
= new (myNodeName, starsServerName, keyFileName,
starsPort);

In the above program, “stars” is used as the object

name, whereas “myNodeName,” “starsServerName,” and
“keyFileName” are string values, and “starsPort” is an
integer value. In addition, “keyFileName” and “starsPort”
are omissible, in which case default values are used.

Connect
The “connect” method is used for establishing a

connection. This method executes the keyword checking
procedure of STARS automatically, and throws an
exception if a connection is not established. An example
of the “connect” method and error handling is given as
follows:

try{
 stars.connect();
}catch(StarsException se){
 //Error handling
 viewPresent.setText(se.toString());
}

Send
The “send” method is used to send messages to the

STARS server in the following manner:

//Send “GetValue” command to a node name “Dev1”.
stars.send(“Dev1 GetValue”);
//or
stars.send(“Dev1”, “GetValue”);

The “send” method throws an exception, in which case

the “try” and “catch” functions must be used.

Receive
The messages received by the client program can be

read from the receive buffer using the “receive” method
given below:

StarsMessage rcvMsg = stars.receive(timeOut);

“timeOut” is an integer value (in m seconds) and is

omissible (default: 5000).
“StarsMessage” has the following fields and methods:
 The “getAllMessage()” method is used for receiving

all messages.
 The “from” field is the message source node name.
 The “to” field is the destination node name.
 The “command” field retains the command part of

the message.
 The “parameters” field retains some of the

parameters used in the message.
 The “getMessage()” method returns “command” and

“parameters.”

Callback Function
When a message arrives from the STARS server, the

function set by the programmer is called using
“startCallbackHandler,” an example of which is shown
below.

public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);

setContentView(R.layout.activity_stars__control__panel
);
//Set callback “StarsMessageHandler()” will be called
// when a message arrives from the STARS Server.

 handler = new Handler();
 StarsCallback Cbh = new StarsMessageHandler();

 try{
 stars.starsCallbackHandler(Cbh);

WEPD24 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

52C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Latest Trends in GUI

 }catch(StarsException se){
 //Write error handling codes here.
 }
}

//Handle messages.
class StarsMessageHandler implements StarsCallback{
 public void starsCallbackHandler(StarsMessage st){
 if(st.command.equals("@GetValue"){
 //Write message handling codes.
 handler.post(new Runnable(){
 public void run(){
 viewPresent.setText(curVal.toString());
 };
 });
 }
}

The “Callback” function of the STARS Java interface
is delivered using a “thread.” However, the Android UI
cannot be handled from another thread. One solution to
this issue is creating a “Runnable” object and then calling
a “post” method. Thus, this is the difference between the
STARS Java interface and the interface for Android.

MOTOR CONTROL PANEL GUI FOR
SMART PHONES

We developed a Motor Control Panel for smart phones,
which is anticipated to will become a common beamline
GUI at the Photon Factory. Figure 4 shows a design view
of the Motor Control Panel on Eclipse.

Figure 4: Design view of the Motor Control Panel.

Figure 5 shows a photograph of the Motor Control
Panel running on a smart phone (Sony Ericsson Xperia).
The Panel connects to the STARS server through a
wireless LAN and communicates with clients using a
stepping motor controller. Beamline users can remotely
control the stepping motor (Fig. 6).

Figure 5: Motor Control Panel on a smart phone.

Figure 6: Stepping motor controller operated by the
Motor Control Panel through STARS.

CONCLUSION
We ported the STARS Java interface to Android, which

was demonstrated to work satisfactorily. We then
developed a Motor Control Panel for smart phones. The
development of a GUI for an Android tablet is also
possible using a similar method.

The STARS Java interface for Android and the GUI for
smart phones or tablets will be useful tools on STARS-
based control systems.

REFERENCES
[1] T. Kosuge, Y. Saito, “RECENT PROGRESS OF STARS”,

Proceedings of PCaPAC2005, Hayama, Japan, 2005.
[2] http://stars.kek.jp/
[3] T. Kosuge, “STARS .NET INTERFACE FOR WINDOWS

CE”, Proceedings of PCaPAC2008, Ljubljana, Slovenia
2008.

[4] T. Kosuge, K. Nigorikawa, “STARS ON PLC”,
Proceedings of PCaPAC2010, Saskatoon, Canada, 2010.

Proceedings of PCaPAC2012, Kolkata, India WEPD24

Latest Trends in GUI

ISBN 978-3-95450-124-3

53 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

