
FACILITY-WIDE SYNCHRONIZATION OF STANDARD FAIR
EQUIPMENT CONTROLLERS

S. Rauch, W. Terpstra, W. Panschow, M. Thieme, C. Prados, M. Zweig, M. Kreider, D. Beck, R. Bär
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Abstract
The standard equipment controller under development

for the new FAIR accelerator facility is the Scalable Con-
trol Unit (SCU). It is designed to synchronize and control
the actions of up to 12 purpose-built slave cards, connected
in a proprietary crate by a parallel backplane. Inter-crate
coordination and facility-wide synchronization are a core
FAIR requirement and thus precise timing of SCU slave
actions is of vital importance.

The SCU consists primarily of two components, an x86
COM Express daughter board and a carrier board with an
Altera Arria II GX FPGA, interconnected by PCI Express.
The x86 receives configuration and set values with which it
programs the real-time event-condition-action (ECA) unit
in the FPGA. The ECA unit receives event messages via the
timing network, which also synchronizes the clocks of all
SCUs in the facility using White Rabbit. Matching events
trigger actions on the SCU slave cards such as: ramping
magnets, triggering kickers, etc.

Timing requirements differ depending on the action
taken. For softer real-time actions, an interrupt can be gen-
erated for complex processing on the x86. Alternatively,
the FPGA can directly fire a pulse out a LEMO output or
an immediate SCU bus operation. The delay and synchro-
nization achievable in each case differs and this paper ex-
amines the timing performance of each to determine which
approach is appropriate for the required actions.

INTRODUCTION
In the FAIR control system, a data master issues high-

level commands to control accelerator devices. The front-
end controllers in the system react to relevant commands,
issuing appropriate actions to their hardware components.
Depending on the action to be taken, there are different tim-
ing requirements to be met.

Unlike the control system currently deployed at GSI,
commands issued by the data master carry an absolute ex-
ecution timestamp. The front-end controllers must receive
commands early enough that they can schedule their ac-
tions to achieve the desired result at the correct time. Un-
fortunately, executing actions takes a variable amount of
time. If the action takes 90-110 µs to execute, then this
places two constraints on the system. Firstly, the data mas-
ter must issue commands at least 110 µs ahead of time. Sec-
ondly, the system must be able to tolerate that the action
could be as much as 10 µs too early or too late.

Issuing commands too far in advance reduces the respon-
siveness of the system. Once the data master has issued a
command, it cannot be aborted. If the situation changes,
perhaps due to interlock or contention from another beam

user, the system cannot react faster than the slowest action
already executing. This neglects, of course, other sources
of latency in the system, such as network propagation de-
lay, which only exacerbate the problem. It is thus generally
desirable to have fast action execution.

Non-deterministic execution time is a potentially much
more serious problem. For example, if a kicker executes an
action a few nanoseconds too late, the beam might be lost.
However, not all actions require the same precision, and it
may make sense to trade accuracy for flexibility in some
situations.

Fortunately, the most common equipment controller in
FAIR, the Scalable Control Unit (SCU), has several possi-
bilities for executing actions. This paper outlines the timing
requirements of various accelerator components in FAIR
and explorers the alternatives which could meet them.

USE CASES
The SCU will be the main frontend controller for the

FAIR project. It provides a uniform platform connected
both to the timing- and the data network of the facility.
In turn, the SCU controls Adaptive Control Units (ACU)
[1] slaves of various form factors which provide additional
features and the necessary hard- and software interfaces to
control the actual accelerator components. This means a
wide range of magnet power supplies, Radio Frequency
(RF) components and beam diagnosis equipment. The set
of executable actions of course varies depending on the
connected equipment. A magnet power supply for exam-
ple will be provided with parameters and timed instruc-
tions to source a current ramp to its magnet, an RF gen-
erator gets different sets of frequency and phase parame-
ters and the time when it needs to switch between them.
The basic concept of the SCU envisions a complete sepa-
ration of data supply and timing/commands. This way it
can make use of higher abstraction levels, i.e. complex
software, which brings flexibility, is more comfortable and
maintainable, and also use low level hardware implemen-
tations to provide fast, deterministic behavior for the pre-
cisely scheduled execution of commands. The device con-
trolled in the RF use case is called FPGA Interface Board
(FIB) [2]. The kicker modules will be controlled by inter-
face devices called IFK via a MIL-STD-1553 based field
bus system.

SCALABLE CONTROL UNIT (SCU)
The SCU is mechanically a stack of up to three sepa-

rated boards. There is the FPGA base board with an Ar-
ria II FPGA, two Small Form-factor Pluggable (SFP) slots,
DDR3 RAM, parallel flash and a parallel bus (SCU bus)

WEPD48 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

84C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Interoperability

FPGA Base Board

FPGA

LM32

WR Core

P
C

Ie
 B

ri
d
g
e

S
C

U
 B

u
s

Userspace

Kernelspace

FESA

PCIe driver

Intel Atom

ACU/FIB

IFK M
IL

Datamaster

COM Express

Figure 1: Block diagram of SCU.

for controlling up to 12 slave devices. In addition the base
boards is equipped with White Rabbit [3] circuitry. A Com-
Express module with an Intel Atom CPU is mounted to
the base board. It has Ethernet, USB and PCIe interfaces.
An optional extension board can be connected to the base
board for backwards compatibility, that runs a MIL-STD-
1553 based field bus interface.

The SCU works as a front-end controller. On one side
it is connected to the control system via Ethernet, on the
other side it controls slave devices over the SCU bus. It re-
ceives 1ns accurate timing information over a White Rabbit
link, connected to an SFP. The White Rabbit receiver in the
FPGA runs Precision Time Protocol (PTP) in software on a
LatticeMico32 (LM32) soft-core CPU. The control system
speaks to the Front End Software Architecture (FESA [4])
class running on the Intel Atom which is connected to the
FPGA via a PCIe bridge.

EXECUTION ALTERNATIVES
When the SCU has an action to perform at a particular

time, it has many alternative execution paths. Each option
carries a trade-off between timing fidelity and the expres-
siveness of the program which performs the action.

FPGA
The SCU’s FPGA can be programmed to generate the

required output on a phase-aligned 8ns clock edge. When
augmented by a fine delay card [5], this can be further im-
proved to a general 1ns accuracy. The only source of non-
determinism is the jitter of the FPGA’s PLL (ps) and the
inherent inaccuracy of White Rabbit (ns). Thus, both the
delay and variability are in the sub-nanosecond range for
this approach. Unfortunately, this execution path requires
custom gateware and/or a simple output action.

LM32
Alternatively, the FPGA can issue an interrupt to an em-

bedded soft-CPU (LM32). This on-chip CPU (with no op-
erating system), can then run software to generate the ap-
propriate action. The delay stems from the time to switch
to interrupt context, run the software routine, and output
the action. While broadly deterministic, cache behaviour
and on-chip bus accesses contribute to runtime variability.

Table 1: Execution Timing Performance
µs min mean max stddev
FPGA 0 0.001 0.001 0.001
LM32 2.863 2.924 3.217 0.058
Kernel 7.120 13.29 37.73 3.49
Userspace 49.36 62.49 93.33 5.62
FESA 138.9 170.1 246.1 10.8

Atom-Kernel
Venturing further afield, the FPGA can issue an interrupt

over PCIe to the Atom processor. The interrupt handler
in the kernel driver then takes immediate action. This de-
lays are the same as for the LM32, except that the interrupt
is delivered off-chip via the PCIe bus. Furthermore, the
Linux kernel may have interrupts masked in some critical
sections, increasing the runtime variability.

Atom-Userspace
Rather than executing the action’s software in kernel-

space, the SCU could also deliver the interrupt to user-
space. This adds additional context switch overhead, but
provides for a more comfortable programming environ-
ment.

FESA
Finally, the userspace program which executes the ac-

tion could use the FESA architecture [4]. Under this more
general framework, the interrupt is translated to an action
using multiple threads. This again increases the number
of context switches and adds inter-process synchronization
delay. However, it arguably provides the most flexible ac-
tion execution framework.

ANALYSIS
To measure the delay and variability of the alternative

execution paths, we connected two outputs from the SCU
to an oscilloscope. The first output is the action aligned to
the FPGA’s 8ns clock. The second output is toggled by the
execution path being measured. This approach excludes the
variability of direct FPGA execution. However, this sub-
nanosecond delay is dwarfed by the alternatives measured.

To capture worst-case variability, all test systems were
subjected to a background work-load and include at least
10000 samples. For the LM32, we ran the white rabbit
PTP core in the background, and performed a save/restore
of all 32 registers on interrupt context switch. The Atom
had a constant background task streaming text over ssh.

We tested the Atom with a real-time patched 2.6.33.6
Linux kernel. The PCIe bridge interrupt handler and kernel
tasklet processes were set to real-time priority 99. For the
userspace test, the test program had real-time priority 98.
FESA set its own real-time priority to 60.

We also measured the LM32 without an instruction
cache. This reduced the variability slightly from 354ns
to 272ns, but greatly increased the average delay from

Proceedings of PCaPAC2012, Kolkata, India WEPD48

Control System Interoperability

ISBN 978-3-95450-124-3

85 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

 0 50 100 150 200 250

N
or

m
al

iz
ed

 P
D

F

delay (s)

LM32
Kernel

Userspace
FESA

μ

Figure 2: Comparison of delay distributions.

2.924 µs to 3.810 µs. Most of the variability appears to
stem from pending Wishbone bus operations which can
take multiple cycles to complete. Our LM32 was clocked at
62.5 MHz and when zoomed into the plot around 3 µs, it be-
comes obvious that the distribution has 22 spikes with 16ns
intervals. When the background task was removed, this de-
generates to 2 spikes, completely removing the variability.
The 3 µs delay stems mostly from saving and restoring the
register set. In principle, one could eliminate this cost using
disjoint registers in interrupt and non-interrupt contexts.

From our measurements, both the time from interrupt
to interrupt handler in Linux and the time from interrupt
handler to userspace completion vary significantly. Unfor-
tunately, with only 10000 samples, we could not trigger
the worst case behaviour for both delays simultaneously.
Adding the two worst-case delays measured separately, we
predict that it should be possible for the Userspace delay to
hit 120 µs and FESA 280 µs.

CONCLUSION
The measured times as presented in Table 1 must be re-

viewed in the context of different use-cases. As an ex-
ample, ramping of magnets must be done synchronously.
Here, a guaranteed synchronicity of 10-20 µs must be
achieved for ring machines like the SIS18 and the SIS100.
Another example is the control of kicker magnets, which
requires at least 3ns precision and can only be done with
FPGA Hardware Description Language (HDL). Software
on the COM Express module may only be used for cases,
where hard real-time is not required. As can be seen from
the differences of minimum and maximum values, none of
the solutions involving the CPU on the COM Express mod-
ule fulfill those requirements, as long as the use of real-time
Linux as operating systems is a stringent requirement for
software tools like FESA.

For hard real-time the options are FPGA HDL or LM32
software. Here, FPGA HDL provides nanoseconds timing
while LM32 software provides a better flexibility. To avoid
stringent limitations for future developments of the FAIR

accelerator complex, standard FAIR equipment controllers
like the SCU should be designed supporting hard real-time
on the nanoseconds scale. If flexibility during runtime is
required, the ideal solution could be a combination of both
options, where LM32 software creates the action patterns
that are phase aligned with high precision by FPGA HDL.

REFERENCES

[1] H. Ramakers et al., “Adaptive Control Unit for Digital
Control of Power Converters for Magnets in GSI and FAIR
Accelerators”, GSI Scientific Report 2008, p. 117,
http://www-alt.gsi.de/informationen/

wti/library/scientificreport2008/PAPERS/

GSI-ACCELERATORS-14.pdf

[2] M. Kumm et al., “Realtime Communication Based on
Optical Fibers for the Control of Digital RF Components”,
GSI Scientific Report 2007, p. 100,
http://www-alt.gsi.de/informationen/

wti/library/scientificreport2007/PAPERS/

GSI-ACCELERATORS-14.pdf

[3] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, G,
Gaderer, “White rabbit: Sub-nanosecond timing distribution
over ethernet”, Precision Clock Synchronization for Mea-
surement, Control and Communication, ISPCS 2009,
DOI:10.1109/ISPCS.2009.5340196.

[4] M. Arruat et al., “Front-end Software Architecture”, Proceed-
ings of ICALEPCS07, Knoxville, Tennessee, USA, p. 310

[5] http://www.ohwr.org/projects/fmc-delay-1ns-8cha

WEPD48 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

86C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Interoperability

