
CONTINUOUS INTEGRATION AND CONTINUOUS DELIVERY AT FRIB∗

M. Konrad†, D. Maxwell, G. Shen
Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA

Abstract

Development of many software projects at the Facility for
Rare Isotope Beams (FRIB) follows an agile development
approach. An important part of this practice is to make
new software versions available to users frequently to get
feedback in a timely manner. Unfortunately building, testing,
packaging, and deploying software can be a time consuming
and error prone process. We will present the processes
and tools we use at FRIB to standardize and automate this
process. This includes use of a central code repository, a
continuous integration server performing automatic builds
and running automatic test, as well as automated software
packaging. For each revision of the software in the code
repository the continuous delivery pipeline automatically
provides a software package that is ready to be released.
The decision to deploy this new version of the software
into our production environment is the only manual step
remaining. The high degree of reproducibility as well as
extensive automated tests allow us to release more frequently
without jeopardizing the quality of our production systems.

INTRODUCTION

FRIB [1] is a project under cooperative agreement be-
tween US Department of Energy and Michigan State Uni-
versity (MSU). It is under construction on the campus of
MSU and will be a new national user facility for nuclear
physics. Its driver accelerator is designed to accelerate all
stable ions to energies >200MeV/u with beam power on the
target up to 400 kW [2]. Commissioning of the front-end
is currently underway and the remaining parts of the accel-
erator are planned to be commissioned over the next two
years.

FRIB’s controls group strives to support commissioning
and operation by rolling out bug fixes and new features as
fast as possible. To make this happen we are following prin-
ciples of agile software development which include iterative,
incremental and evolutionary development and a short feed-
back and adaption cycle. Unfortunately this approach can
be slowed down considerably by the fact that building and
deploying control-system software can be a complex and
error prone process that often requires considerable manual
work by experts. In the following we will describe how we
speed up the build and deployment process for FRIB’s con-
trols software by following continuous integration (CI) and
continuous delivery (CD) principles.

∗ Work supported by the U. S. Department of Energy Office of Science
under Cooperative Agreement DE-SC0000661

† konrad@frib.msu.edu

CONTINUOUS DELIVERY
The process of building and deploying software gener-

ally consists of a series of tasks that can be thought of as a
pipeline. Figure 1 shows the steps of a typical software build
and deployment process as it has been implemented at FRIB.
Each task in this pipeline is carried out after the preceding
step has been completed successfully. In the following we
will describe each of these steps in detail.

Revision Control
All source code required to build software for FRIB’s

accelerator control system is stored on a central Git [3]
repository server. The repository server is running Atlassian
Bitbucket Server [4] which, in addition to basic Git server
functionality, provides a web interface, pull requests and
branch permissions.

Our Git work flow largely follows the Gitflow [5] approach
which requires developers to implement new features or bug
fixes on feature branches allowing them to work on their
feature without the risk of breaking other developer’s build.
If however the number of feature branches becomes too high
and feature branches live for too long merge conflicts are
becoming more likely. To reduce time-consuming conflict
resolution we are following the practice of CI which requires
feature branches to be merged into a shared mainline fre-
quently. CI principles generally recommend branches to be
merged at least once a day. In our experience many controls
projects have a rather low rate of change or a very low num-
ber of developers making a life time of a few days feasible
with an acceptable risk of running into merge conflicts. For
critical code we use pull requests as a tool to facilitate code
reviews. The goal still remains the same: Code reviews
and possibly required rework should be performed timely so
that feature branches can be merged into mainline as fast as
possible.
A significant amount of FRIB’s control system software

is developed in collaboration with other laboratories with
its source code being tracked in a an upstream repository on
the Internet. In this case our CI server mirrors the mainline
branch of the upstream repository into a branch in our local
repository on a regular basis. Following CI principles, we
are merging upstream changes into our own mainline branch
as soon as possible to keep merge conflicts with our feature
branches to a minimum. In general we are aiming to keep
the number of FRIB-specific modifications to a minimum.
Instead we prefer to contribute our improvements back to
the upstream project. This reduces the risk of merge conflict
in our repository and thus reduces the maintenance effort in
the long run. At the same time this approach allows us to
fix critical bugs in our local repository until they are fixed
upstream.

Proceedings of PCaPAC2016, Campinas, Brazil FRITPLCO01

Management of IT Projects
ISBN 978-3-95450-189-2

145 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs



Revision
Control
System

Build
Unit
Tests

Packaging
Package

Tests

Deployment 
to Test

Environment

Acceptance
Tests

Deployment
to Production

System

Package
Repository

Figure 1: Overview of the FRIB continuous delivery pipeline.

Build
Building after each commit/merge is a best practice that

ensures build issues are caught as early as possible. Frequent
integration of feature branches into the mainline branch
means the mainline code needs to be built frequently. At
FRIB software is built automatically by a CI cluster run-
ning Jenkins [6]. This cluster consists of two Linux build
nodes, a Windows build node, and a build node for FPGA
projects. The two Linux build nodes can each run four jobs
in parallel and are thus capable of completing builds within
an acceptable time even at times of high load. A separate
Jenkins master machine orchestrates the software builds
by distributing them to the appropriate build nodes based
on build requirements and load. All machines are virtual
machines which facilitates adding resources or more build
nodes.

Build logs are being archived for each build along with the
artifacts that resulted from a successful build (e. g. binary
files/package files). This data is available to developers via
a web interface. For each successful build the resulting
artifacts are passed on to the next step in the pipeline.

Unit Tests
Developers need to ensure their unit tests can be executed

in a standard way (e. g. by running make test). Tests that
have been set up in this way are automatically executed after
the software has been built. Test results printed to standard
output are archived by Jenkins as part of the build log. Test
logs that are compliant to well known standards can also be
visualized by Jenkins. For packages that do not come with
unit tests this step is skipped automatically.

Packaging
FRIB is using Debian GNU/Linux as the standard op-

erating system for control-system computers. Software is
packaged into Debian packages to facilitate installation, up-
grade and complete removal. Packages also allow develop-
ers to define dependencies between software components.
Possible incompatibilities with specific versions of these
dependencies can also be reflected in these dependencies.

Debian packages are built using Jenkins Debian Glue [7]
which adds Debian packaging capabilities to Jenkins. Pack-
ages are generated in a two-step process. First a Debian
source package is generated from the source code stored in
the Git repository. In a second step this source package is
built in a “clean-room” environment consisting of a chroot
sandbox. In addition to a Debian base system only packages
that are defined in the list of build dependencies for the pack-
age are installed in the sandbox guaranteeing a reproducible
environment. Each build starts with a fresh sandbox. By
using copy-on-write techniques Jenkins Debian Glue is able
to speed up the process of generating build environments
significantly.
Binary packages are built for each entry in a predefined

build matrix. This matrix can be configured for each project
individually and can contain multiple target architectures as
well as multiple Debian operating system versions. Being
able to build packages for multiple operating system versions
is important during a phase of operating system upgrades
where some machines might already run the new version
while others are still using an older version.

Package Tests
A set of automated tests are run on each Debian package

to catch common packaging issues. These tests ensure the
package can be installed, upgraded and removed cleanly.

Package Repository
Once a Debian package has passed all tests it is pushed

into a Debian package repository. This package repository
is being managed by aptly [8]. It lives on the Jenkins mas-
ter machine and makes packages available for download
via HTTP. The package repository uses signatures based
on state-of-the-art cryptography to make it more difficult
for attackers to inject malicious packages into the controls
network. Packages from this repository can also be installed
by Jenkins to satisfy build dependencies of other packages.

Management of Jenkins Jobs
For most job types the build pipeline is broken into multi-

ple jobs on the CI server to make it more obvious to devel-

FRITPLCO01 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
146Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Management of IT Projects



opers in which step of the pipeline an error occurred. For
Debian packages the pipeline consists of the following jobs:

1. Build source package

2. Build binary package(s)

3. Run package tests

4. Push package to the package repository

Note that the source package is only built once whereas the
remaining steps are being performed for all entries of the
build matrix.

So far more than 700 jobs are defined on the FRIB Jenkins
server; the majority are related to building Debian packages.
Instead of setting them up manually they are managed using
Jenkins Job Builder [9]. This tool configures jobs based on a
set of templates and a short description of each project. This
ensures all jobs of a certain type are configured the same
way.

In addition to this basic job management we automatically
generate triggers between pipelines belonging to different
projects based on the dependencies defined in the Debian
packages. This ensures that after a library has been built all
projects that use this library are being rebuilt automatically
as well. This approach helps to catch issues as early as
possible. The dependencies are visualized by Jenkins in
form of a dependency graph.

AUTOMATIC DEPLOYMENT
FRIB uses Puppet [10] for IT configuration management.

This tool takes a description of the configuration of the tar-
get computers as an input and ensures these machines are
configured accordingly. For most machines deployment is
completely automated allowing to re-install machines from
scratch within a few minutes.

Deployment to Test Environment
At FRIB controls applications are tested in a develop-

ment/test environment before they are deployed to the pro-
duction network. This test environment mimics the FRIB
production network as close as feasible (similar network
layout, running the same services etc.). Configuration of
machines on the test network is also managed by Puppet.
Deployment to the test environment follows the principles of
continuous deployment which means that the latest version
of each application is deployed to this network automatically.

Acceptance Test
For most applications a manual acceptance test is per-

formed in the test environment. If this tests passes the corre-
sponding packages can be deployed to the production envi-
ronment.

Deployment to Production Environment
Deployment to the production network follows the prin-

ciples of continuous delivery. Each code version is being

built into a package which potentially can be released to the
production environment. However, the release process itself
requires a manual decision. This decision is based on the
results of the acceptance test as well as on the operational
needs of the accelerator. For example deployment can be
postponed until the next maintenance shutdown.

SUMMARY
FRIB’s build and deployment process has been automated

successfully. This allows us to support commissioning and
operation of FRIB by applying an agile development work
flow with short adaption cycles. The automated processes
have improved reproducibility significantly. Full traceability
makes it easy to find out which version of the source code
has been used to build a certain package. It also allows
developers to inspect the corresponding build logs and inter-
mediary build results making troubleshooting much easier.
CD makes it easier for developers to contribute to many
different projects since no expert knowledge is required to
build and deploy the software. This facilitates team work.

The biggest challenge we encountered while introducing
CD is a lack of test automation which can lead to a lack
of developer confidence. In a similar way users can feel
uncomfortable with software being upgraded frequently, es-
pecially during critical parts of accelerator operation. Until
test coverage has been improved this can be overcome by
careful scheduling of upgrades.

REFERENCES
[1] FRIB, http://www.frib.msu.edu

[2] J. Wei , “FRIB Accelerator: Design and Construction
Status,” in Proc. 13th Int. Conf. on Heavy Ion Accelerator
Technology. (HIAT’15), Yokohama, Japan, September 2015,
paper MOM1I02, pp. 6–10.

[3] Git Distributed Version Control System, https://git-scm.
com/

[4] Atlassian Bitbucket Server, https://bitbucket.org/
product/server

[5] V. Driessen: A successful Git branching model,
http://nvie.com/posts/a-successful-git-
branching-model/

[6] Jenkins Automation Server, https://jenkins.io/

[7] Jenkins Debian Glue, http://jenkins-debian-glue.
org/

[8] aptly Debian Repository Management Tool, https://www.
aptly.info

[9] Jenkins Job Builder, http://docs.openstack.org/
infra/jenkins-job-builder/

[10] Puppet Configuration Management Tool, https://puppet.
com/

et al.

Proceedings of PCaPAC2016, Campinas, Brazil FRITPLCO01

Management of IT Projects
ISBN 978-3-95450-189-2

147 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs


