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Abstract 
 At the ALBA’s Computing Division, we have started 
the development of a high-performance electrometer, the 
Em# project, as a versatile and full customizable 
equipment. It is based on a SPEC board (simple PCIe 
FMC carrier) with customizable FMC cards and an SBC 
(Single Board Computer), altogether built in a single cost-
optimized instrument. The whole device is designed to 
provide a wide range of functionalities to fulfill unique 
and complex experiments by means of configuration 
changes instead of having specific instruments.  

Within the controls software development group, we 
started the development of a full embedded control 
software, based on a Linux OS that communicates with 
the SPEC’s FPGA using the PCIe bus. This approach 
enables the integration of complex operations and 
functions in real time to higher software layers, as well as 
the local control, setup and diagnostics via an integrated 
touch-screen display controlled by the I2C protocol. For a 
user-level control, the system provides an SCPI API 
(Standard Commands for Programmable Instruments) 
allowing an easy integration to any control system. This 
paper describes the design process, main aspects of the 
data acquisition and the expected benefits during the 
integration in the Control System. 

INTRODUCTION 
High accuracy low current readout is an extensively 

demanded technique used in 3rd generation synchrotrons. 
They comprise a need both for diagnostics and data 
acquisition in today’s photon labs. In order to tackle the 
problem of measuring from various sources of different 
nature and magnitude synchronously, while remaining 
flexible at the same time, ALBA developed years ago a 4 
independent channel electrometer, the Em, based on 
trans-impedance amplifiers with high resolution ADC 
converters integrated and an Ethernet communication 
port.  

The new Em# is the evolution of the 4-channel 
electrometer Em widely used in at ALBA since 2011. 
This new product solves a few limitations and provides 
new functionalities to make it more versatile and 
customizable.  

ELECTRIC DESIGN 
The Em# project uses a Simple PCI Express FMC 

Carrier (SPEC [1]) board to command a FPGA 
Mezzanine Card (FMC), designed to work as a 4-channel 
ADC and transfer the processed data to a Single Board 

Computer (SBC), the Intel NUC DE3815 [2], using its 
high-speed serial computer expansion bus (PCIe). 

The SPEC, it is a cost-optimized design developed by 
the CERN under the Open Hardware Licence (OHL) that 
mainly works as FMC carrier. It is powered by Xilinx 
Spartan 6 FPGA [3] for custom gateware designs using 
High-speed serial connectivity, a PCIe interface and an 
FMC slot.  

This hardware configuration allows Em# implement 
its own FPGA control code, to manage a 4-channel ADC 
converter in the FMC card. The communication and data 
sharing with the main control software in the SBC are 
also part of the control code routines implemented in the 
FPGA. But apart form the SPEC and SBC boards, there 
are other hardware boards included in this equipment. 
Figure 1 shows the hardware diagram block of the Em# 
project.  

 

 
Figure 1: Em# hardware diagram block. 

 
The Current Amplifier board (CA) contains the 

circuitry needed to communicate and control the 4 current 
amplifiers (CA-X). The Front-End board (FE) manages 
the trigger input and the different IO ports (4 High-Speed 
I/O ports and 9 Differential I/O ports). The Power Supply 
Board (PSB) supplies the equipment with different 
voltages needed by each module or board. A Touch-
Screen (edip128) monitors the status and lets a general 
configuration of the equipment. 

SOFTWARE DESIGN 
The software development has been divided into three 

software projects, all together distributed in a single 
software package: 

 The Linux OS 
 The gateware (FPGA software) 
 The main control software in the SBC (ALIN) 
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The Em# features a complex embedded control 
software based on Linux OS. For that reason, a light 
Embedded Linux has been customized specially for this 
equipment, with only the necessary drivers to control the 
available hardware and with enough functionality to run 
the required applications. This Embedded Linux has been 
created using Yocto [4], an open source collaboration 
project that provides a set of recipes, tools and methods 
that allow building custom Linux-based systems to be 
embedded, regardless of the hardware architecture. 
Among the different recipes or set of recipes used for this 
project, these are the most significant ones: 

 meta-e3815:  Recipes to build the Embedded Linux 
OS distribution for the Intel Atom Processor E3815, 
used for this project. 

 meta-spec: Main recipe used to compile and install 
the Spec Linux drivers in the corresponding Linux 
kernel selected 

 meta-python: This is the set of recipes that provides 
python support. 

 meta-alba: Contains the set of recipes to install the 
main control software (ALIN) and its drivers in the 
SBC 

 
The gateware software [5] runs in the SPEC FPGA. It 

is written in VHDL and the design focuses on fast 
acquisition and data sharing between the different 
modules inside the FPGA as well as with the software 
running in the SBC. The binary, is reprogrammed in the 
FPGA every time the system boots. Figure 2 shows the 
FPGA block diagram. 

 

 
Figure 2: FPGA block diagram

 
The Em# has been designed to acquire data at 

400KSamples/second per channel. The main software is 
not fast enough to get the 4-channels data acquired at that 
sample rate via PCI bus. Therefore, the acquisition is 
carried out by the gateware software through a fast data 
acquisition bus, designed and implemented to share data 
between the different FPGA blocks. That fast data bus 
name is the Harmony Bus. Acquired data is stored in an 
FPGA memory block. The frames sent through this bus 
contains: the ID of the block which generates the frame, 
the data and the timestamp which indicates when the data 

was generated. The main software in the SBC configures 
the different acquisition types and reads the acquired data 
stored in the FPGA memory. Other slow and low priority 
data such as the information displayed in the touch-
screen, are also transmitted through the PCI bus 

In the SBC resides and runs the main software (ALIN) 
that has been designed aiming for high versatility in the 
application design and easy user control of the equipment. 
Versatility means that the software is easily adaptable to 
new features, just modifying the configuration of the 
FPGA, or to hardware changes. ALIN is a multipurpose 
software customized to work as an electrometer. 
Regarding the easy user control, it offers both remote and 
local control interfaces. Remote control is available via 
telnet (using the SCPI protocol [6]) or via web through a 
webserver. Local control is available through navigation 
menus using the touch-screen display.  

 

 
Figure 3: SBC software architecture. 

 
Written in Python has the profits from the clean and 

straightforward syntax, while still performing well. The 
Figure 3 shows the software architecture of ALIN divided 
in different functional layers. The communication 
between modules in different layers is always from top to 
bottom, except for the middleware layer where a cross 
communication is allowed to share data between the 
different modules. The different layers are, from top to 
bottom: 

 Applications: The main application is in this layer. It 
allows the equipment control, remote or locally. It 
starts when the equipment boots and it is responsible 
to initialize and configure the middleware modules 
that contain the control and diagnostics functions. 

 Middleware: In this layer resides the logic that 
makes this equipment work as an electrometer, or as 
any other equipment. It also provides the 
functionality to interact with the equipment through 
the touch-screen, or through a communications port.  
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 Drivers: Software modules to control physical or 
logical devices are in this layer. There is a driver for 
each FPGA module, a driver for each I2C device or a 
driver for the SCPI that contains the protocol to 
remotely control the equipment. 

 Linux drivers: At the bottom, there are the Linux 
drivers needed for the Em# project. They have been 
previously compiled for the Embedded Linux 
distribution. Examples are the SPEC driver to 
communicate with the SPEC board via PCI or the 
I2C driver to control the display and the Power 
Supply Board (PSB). 

 
In the left-bottom side of Figure 3, the Spec and FMC 

Linux drivers [7, 8] are the kernel modules to control the 
SPEC and FMC cards via PCI bus. These Linux drivers 
are used by others like alin and alindev which implement 
read/write operations on the FPGA using the Self 
Describing Bus (SDB) [9]. This is a framework that helps 
to self-detect and manage the FPGA contents. It describes 
a series of structures used to provide metadata about the 
FPGA logic blocks, allowing the main software to 
automatically discover and configure them at runtime, via 
PCI bus. These SDB data structures are divided in records 
of 256 bytes size, where the first 64-byte are common 
between records and provide information about the FPGA 
blocks like the type of record, product, vendor, name, 
date, version and also the first-last address of the virtual 
memory space where the block data is located.  

On top the alin drivers; there are specific drivers for 
each FPGA block. They provide functions to initialize 
write default values or read/write registers. These drivers 
use an external file that contains the register mapping. 
This file is auto generated using the same definition file 
which is used to define the FPGA block in the gateware 
software. 

In the middleware layer, the Harmony Control 
middleware module uses these drivers to implement the 
electrometer Em# functionality. It configures the 
acquisition that will go through the Harmony bus in the 
FPGA, starts/stops the acquisition and process the 
acquired data in the FPGA memory. Acquired data and 
configuration parameters are shared to the rest of the 
middleware modules. External configuration of some 
predefined main software parameters, it is possible 
through a configuration file, which is loaded every time 
the system starts or after user request, by a command 
execution.  

Remote control of the equipment is possible through 
a simple set of ASCII commands. These user control 
commands are implemented following a standard protocol 
for programmable instruments; the SCPI protocol. SCPI 
commands are ASCII textual strings that can contain one 
or more keywords, many of which take parameters. 
Responses to query commands are typically ASCII 
strings. The SCPI middleware module contains the list 
of control and configuration commands and their 
associated read/write call-back Em# functions. The SCPI 

driver, used by this middleware module is where the 
SCPI protocol is implemented. 

The Em# also includes a web server for remote 
monitoring and overall control. The web offers a general 
equipment status, the current and voltages values read 
from the 4 channels, the configuration of the channels, the 
status and configuration of the acquisition, the last data 
acquired, the status and configuration of the 16 I/O ports, 
general diagnostics, etc. The Webserver middleware 
starts/stops the server using the Base HTTP Server [10] 
python library. The Webserver middleware is also 
responsible to gather the information to be shown in the 
web client, generating periodically a Javascript Object 
Notation (JSON) file [11]. Figure 4 shows the typical 
applications running in the browser client. It is a 
JavaScript application that uses jQuery library [12] to 
read the contents of the JSON file and keep the web 
contents updated. In the opposite way, when a parameter 
is modified in the browser client, it executes a PHP code 
in the server side. The webserver middleware captures the 
data send in the POST PHP method and then executes the 
corresponding call-back command in the main 
application. 

 

 
Figure 4: Web application in browser client. 

 
 It is also possible to do a more specific remote 

control of the FPGA through the tools available via SSH. 
There is a handful set of tools that help designers to 
check/configure the status of the FGPA, to get the SDB 
structures, write binary file or read/write to the FPGA 
devices or to configure some general parameters of the 
equipment 

Local equipment control is possible through to the 
touch-screen display. The Display middleware module 
allows the user control through navigation menus, to 
locally configure or check the status of the equipment via 
the touch-screen display. The display is programmed by 
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means of a protocol of high-level language graphic 
commands via I2C [13]. The edip128 implements the 
communication protocol with the display. 

ALIN also includes functions to control and self-
detect its own diagnostic status. That is done in the 
Diagnostics middleware module. Check the harmony 
bus stability, self-detect the consumption of the power 
supplies in the Power Supply Board (PSB) board, among 
other tasks are some of the diagnostics examples done by 
this module. To control the PSB board is done using the 
Ads7828 (ADC) and Mcp23008 (Port-Expander) I2C 
drivers. 

CONCLUSIONS 
There are already many customizable business 

solutions in the market that include an FPGA, a CPU and 
an FMC connector, all together on the same equipment. 
The Em# project tries to take the advantage of such 
solutions while offering a reduced cost. The software 
project has been designed modular to adapt to any other 
similar hardware approach, occasionally needing few 
changes in the driver modules or different configuration 
files. The control toolkit has been also designed to ensure 
an easy integration into any control system, regardless of 
the framework used for the control. 

Direct memory access (DMA) is currently not 
supported in this design and therefore FPGA data is read 
by the NUC through virtual memory spaces via PCIe. 
That could be a problem due to the main software not 
being fast enough to meet the desired acquisition time of 
400 KSamples per second. Instead, it can be considered as 
an advantage because the final solution applied (a FPGA 
memory block, the Harmony bus and the dynamic ID’s) 
allows keeping a completely separate functionality 
between FPGA and NUC. The configuration and control 
resides in the NUC while the data acquisition is mainly in 
the FPGA. The result is that functionality of the Em# is 
not limited to work only as an electrometer but can be 
adapted and extended with other flavours in the control 
applications domain. 
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