
EMBEDDED CONTROL SYSTEM FOR PROGRAMMABLE
MULTI-PURPOSE INSTRUMENTS

M. Broseta, J. Avila-Abellan, S. Blanch-Torné, G. Cuní, D. Fernández-Carreiras, O.Matilla,
 J. Moldes, M. Rodríguez, S. Rubio-Manrique, J. Salabert, X. Serra-Gallifa,

ALBA Syncrothron, Cerdanyola Vallès, Spain

Abstract
 At the ALBA’s Computing Division, we have started
the development of a high-performance electrometer, the
Em# project, as a versatile and full customizable
equipment. It is based on a SPEC board (simple PCIe
FMC carrier) with customizable FMC cards and an SBC
(Single Board Computer), altogether built in a single cost-
optimized instrument. The whole device is designed to
provide a wide range of functionalities to fulfill unique
and complex experiments by means of configuration
changes instead of having specific instruments.

Within the controls software development group, we
started the development of a full embedded control
software, based on a Linux OS that communicates with
the SPEC’s FPGA using the PCIe bus. This approach
enables the integration of complex operations and
functions in real time to higher software layers, as well as
the local control, setup and diagnostics via an integrated
touch-screen display controlled by the I2C protocol. For a
user-level control, the system provides an SCPI API
(Standard Commands for Programmable Instruments)
allowing an easy integration to any control system. This
paper describes the design process, main aspects of the
data acquisition and the expected benefits during the
integration in the Control System.

INTRODUCTION
High accuracy low current readout is an extensively

demanded technique used in 3rd generation synchrotrons.
They comprise a need both for diagnostics and data
acquisition in today’s photon labs. In order to tackle the
problem of measuring from various sources of different
nature and magnitude synchronously, while remaining
flexible at the same time, ALBA developed years ago a 4
independent channel electrometer, the Em, based on
trans-impedance amplifiers with high resolution ADC
converters integrated and an Ethernet communication
port.

The new Em# is the evolution of the 4-channel
electrometer Em widely used in at ALBA since 2011.
This new product solves a few limitations and provides
new functionalities to make it more versatile and
customizable.

ELECTRIC DESIGN
The Em# project uses a Simple PCI Express FMC

Carrier (SPEC [1]) board to command a FPGA
Mezzanine Card (FMC), designed to work as a 4-channel
ADC and transfer the processed data to a Single Board

Computer (SBC), the Intel NUC DE3815 [2], using its
high-speed serial computer expansion bus (PCIe).

The SPEC, it is a cost-optimized design developed by
the CERN under the Open Hardware Licence (OHL) that
mainly works as FMC carrier. It is powered by Xilinx
Spartan 6 FPGA [3] for custom gateware designs using
High-speed serial connectivity, a PCIe interface and an
FMC slot.

This hardware configuration allows Em# implement
its own FPGA control code, to manage a 4-channel ADC
converter in the FMC card. The communication and data
sharing with the main control software in the SBC are
also part of the control code routines implemented in the
FPGA. But apart form the SPEC and SBC boards, there
are other hardware boards included in this equipment.
Figure 1 shows the hardware diagram block of the Em#
project.

Figure 1: Em# hardware diagram block.

The Current Amplifier board (CA) contains the

circuitry needed to communicate and control the 4 current
amplifiers (CA-X). The Front-End board (FE) manages
the trigger input and the different IO ports (4 High-Speed
I/O ports and 9 Differential I/O ports). The Power Supply
Board (PSB) supplies the equipment with different
voltages needed by each module or board. A Touch-
Screen (edip128) monitors the status and lets a general
configuration of the equipment.

SOFTWARE DESIGN
The software development has been divided into three

software projects, all together distributed in a single
software package:

 The Linux OS
 The gateware (FPGA software)
 The main control software in the SBC (ALIN)

Em#
Current Amplifier

Board (CA)

CA-1

CA-2

CA-3

CA-4

Front-End
Board (FE)

FMC
SPEC

FPGA

Power Supply Board (PSB)

Touch-Display
(edip128)

Single Board Computer
(Intel NUC DE3815)

IN 1

IN 2

IN 3

IN 4

Trigger-IN

High-Speed I/O x4

Diff I/O x9

ADC

DAC

P
C

Ie

I2
C

Eth
Network

THDAPLCO01 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
80Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Data Acquisition and Data Analysis

The Em# features a complex embedded control
software based on Linux OS. For that reason, a light
Embedded Linux has been customized specially for this
equipment, with only the necessary drivers to control the
available hardware and with enough functionality to run
the required applications. This Embedded Linux has been
created using Yocto [4], an open source collaboration
project that provides a set of recipes, tools and methods
that allow building custom Linux-based systems to be
embedded, regardless of the hardware architecture.
Among the different recipes or set of recipes used for this
project, these are the most significant ones:

 meta-e3815: Recipes to build the Embedded Linux
OS distribution for the Intel Atom Processor E3815,
used for this project.

 meta-spec: Main recipe used to compile and install
the Spec Linux drivers in the corresponding Linux
kernel selected

 meta-python: This is the set of recipes that provides
python support.

 meta-alba: Contains the set of recipes to install the
main control software (ALIN) and its drivers in the
SBC

The gateware software [5] runs in the SPEC FPGA. It

is written in VHDL and the design focuses on fast
acquisition and data sharing between the different
modules inside the FPGA as well as with the software
running in the SBC. The binary, is reprogrammed in the
FPGA every time the system boots. Figure 2 shows the
FPGA block diagram.

Figure 2: FPGA block diagram

The Em# has been designed to acquire data at

400KSamples/second per channel. The main software is
not fast enough to get the 4-channels data acquired at that
sample rate via PCI bus. Therefore, the acquisition is
carried out by the gateware software through a fast data
acquisition bus, designed and implemented to share data
between the different FPGA blocks. That fast data bus
name is the Harmony Bus. Acquired data is stored in an
FPGA memory block. The frames sent through this bus
contains: the ID of the block which generates the frame,
the data and the timestamp which indicates when the data

was generated. The main software in the SBC configures
the different acquisition types and reads the acquired data
stored in the FPGA memory. Other slow and low priority
data such as the information displayed in the touch-
screen, are also transmitted through the PCI bus

In the SBC resides and runs the main software (ALIN)
that has been designed aiming for high versatility in the
application design and easy user control of the equipment.
Versatility means that the software is easily adaptable to
new features, just modifying the configuration of the
FPGA, or to hardware changes. ALIN is a multipurpose
software customized to work as an electrometer.
Regarding the easy user control, it offers both remote and
local control interfaces. Remote control is available via
telnet (using the SCPI protocol [6]) or via web through a
webserver. Local control is available through navigation
menus using the touch-screen display.

Figure 3: SBC software architecture.

Written in Python has the profits from the clean and

straightforward syntax, while still performing well. The
Figure 3 shows the software architecture of ALIN divided
in different functional layers. The communication
between modules in different layers is always from top to
bottom, except for the middleware layer where a cross
communication is allowed to share data between the
different modules. The different layers are, from top to
bottom:

 Applications: The main application is in this layer. It
allows the equipment control, remote or locally. It
starts when the equipment boots and it is responsible
to initialize and configure the middleware modules
that contain the control and diagnostics functions.

 Middleware: In this layer resides the logic that
makes this equipment work as an electrometer, or as
any other equipment. It also provides the
functionality to interact with the equipment through
the touch-screen, or through a communications port.

Li
n

u
x

(Y
o

ct
o

)

Em# Main App

Harmony Ctrl
(R/W fns(Fast/Slow Bus))

ADC
CORE FIFO ID Gen AVG MEM SPI

SBC SW Architecture

SPEC (FPGA) Display

Middle
ware

Drivers

Config File
ID's

Attributes Config

Mappinng *.wb files

Linux
Drivers

PSB

Display

Network

I2
C

I2
C

P
C

Ie

Web
Server

SCPI
Cmd Diags

.

Proceedings of PCaPAC2016, Campinas, Brazil THDAPLCO01

Data Acquisition and Data Analysis
ISBN 978-3-95450-189-2

81 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

 Drivers: Software modules to control physical or
logical devices are in this layer. There is a driver for
each FPGA module, a driver for each I2C device or a
driver for the SCPI that contains the protocol to
remotely control the equipment.

 Linux drivers: At the bottom, there are the Linux
drivers needed for the Em# project. They have been
previously compiled for the Embedded Linux
distribution. Examples are the SPEC driver to
communicate with the SPEC board via PCI or the
I2C driver to control the display and the Power
Supply Board (PSB).

In the left-bottom side of Figure 3, the Spec and FMC

Linux drivers [7, 8] are the kernel modules to control the
SPEC and FMC cards via PCI bus. These Linux drivers
are used by others like alin and alindev which implement
read/write operations on the FPGA using the Self
Describing Bus (SDB) [9]. This is a framework that helps
to self-detect and manage the FPGA contents. It describes
a series of structures used to provide metadata about the
FPGA logic blocks, allowing the main software to
automatically discover and configure them at runtime, via
PCI bus. These SDB data structures are divided in records
of 256 bytes size, where the first 64-byte are common
between records and provide information about the FPGA
blocks like the type of record, product, vendor, name,
date, version and also the first-last address of the virtual
memory space where the block data is located.

On top the alin drivers; there are specific drivers for
each FPGA block. They provide functions to initialize
write default values or read/write registers. These drivers
use an external file that contains the register mapping.
This file is auto generated using the same definition file
which is used to define the FPGA block in the gateware
software.

In the middleware layer, the Harmony Control
middleware module uses these drivers to implement the
electrometer Em# functionality. It configures the
acquisition that will go through the Harmony bus in the
FPGA, starts/stops the acquisition and process the
acquired data in the FPGA memory. Acquired data and
configuration parameters are shared to the rest of the
middleware modules. External configuration of some
predefined main software parameters, it is possible
through a configuration file, which is loaded every time
the system starts or after user request, by a command
execution.

Remote control of the equipment is possible through
a simple set of ASCII commands. These user control
commands are implemented following a standard protocol
for programmable instruments; the SCPI protocol. SCPI
commands are ASCII textual strings that can contain one
or more keywords, many of which take parameters.
Responses to query commands are typically ASCII
strings. The SCPI middleware module contains the list
of control and configuration commands and their
associated read/write call-back Em# functions. The SCPI

driver, used by this middleware module is where the
SCPI protocol is implemented.

The Em# also includes a web server for remote
monitoring and overall control. The web offers a general
equipment status, the current and voltages values read
from the 4 channels, the configuration of the channels, the
status and configuration of the acquisition, the last data
acquired, the status and configuration of the 16 I/O ports,
general diagnostics, etc. The Webserver middleware
starts/stops the server using the Base HTTP Server [10]
python library. The Webserver middleware is also
responsible to gather the information to be shown in the
web client, generating periodically a Javascript Object
Notation (JSON) file [11]. Figure 4 shows the typical
applications running in the browser client. It is a
JavaScript application that uses jQuery library [12] to
read the contents of the JSON file and keep the web
contents updated. In the opposite way, when a parameter
is modified in the browser client, it executes a PHP code
in the server side. The webserver middleware captures the
data send in the POST PHP method and then executes the
corresponding call-back command in the main
application.

Figure 4: Web application in browser client.

 It is also possible to do a more specific remote

control of the FPGA through the tools available via SSH.
There is a handful set of tools that help designers to
check/configure the status of the FGPA, to get the SDB
structures, write binary file or read/write to the FPGA
devices or to configure some general parameters of the
equipment

Local equipment control is possible through to the
touch-screen display. The Display middleware module
allows the user control through navigation menus, to
locally configure or check the status of the equipment via
the touch-screen display. The display is programmed by

THDAPLCO01 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
82Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Data Acquisition and Data Analysis

means of a protocol of high-level language graphic
commands via I2C [13]. The edip128 implements the
communication protocol with the display.

ALIN also includes functions to control and self-
detect its own diagnostic status. That is done in the
Diagnostics middleware module. Check the harmony
bus stability, self-detect the consumption of the power
supplies in the Power Supply Board (PSB) board, among
other tasks are some of the diagnostics examples done by
this module. To control the PSB board is done using the
Ads7828 (ADC) and Mcp23008 (Port-Expander) I2C
drivers.

CONCLUSIONS
There are already many customizable business

solutions in the market that include an FPGA, a CPU and
an FMC connector, all together on the same equipment.
The Em# project tries to take the advantage of such
solutions while offering a reduced cost. The software
project has been designed modular to adapt to any other
similar hardware approach, occasionally needing few
changes in the driver modules or different configuration
files. The control toolkit has been also designed to ensure
an easy integration into any control system, regardless of
the framework used for the control.

Direct memory access (DMA) is currently not
supported in this design and therefore FPGA data is read
by the NUC through virtual memory spaces via PCIe.
That could be a problem due to the main software not
being fast enough to meet the desired acquisition time of
400 KSamples per second. Instead, it can be considered as
an advantage because the final solution applied (a FPGA
memory block, the Harmony bus and the dynamic ID’s)
allows keeping a completely separate functionality
between FPGA and NUC. The configuration and control
resides in the NUC while the data acquisition is mainly in
the FPGA. The result is that functionality of the Em# is
not limited to work only as an electrometer but can be
adapted and extended with other flavours in the control
applications domain.

REFERENCES
[1] Simple PCIE FMC Carrier (SPEC). OHWR website:
 http://www.ohwr.org/projects/spec/wiki
[2] Intel NUC DE3815,

http://www.intel.eu/content/www/eu/en/nuc/nuc
-kit-de3815tykhe-board-de3815tybe.html

[3] Spartan-6 FPGA Data Sheet,
https://www.xilinx.com/support/documentation/
data_sheets/ds162.pdf

[4] Yocto Project, https://www.yoctoproject.org
[5] X. Serra et al., “A Generic Fpga Based Solution for Flexible

Feedback Systems”, ALBA-CELLS Synchrotron, presented
at PCaPAC16, Campinas, Brazil, Oct 2016, paper
FRFMPLCO06, this conference.

[6] “Standard Commands for Programmable Instruments”,
European SCPI Consortium, May 1999.

[7] A. Rubini, “SPEC Software Support”, CERN, February
2014.

[8] A.Rubini “FMC Bus Abstraction for Linux”, CERN,
February 2014

[9] A.Rubini, W. Terpstra, M. Vange, “Self Describing Bus
(SDB) – Specification for Logic cores – Version 1.1”, April
2013

[10] Guido van Rossum and the Python development team, “The
Python Library Reference (Release 2.7.12)”, Python
software Foundation, September 2016.

[11] Introducing to JSON, http://www.json.org
[12] JQuery 1.9 documentation, http://www.jquery.com
[13] SMBus/I2C Protocol,

http://git.kernel.org/cgit/linux/kernel/git/t
orvalds/linux.git/plain/Documentation/i2c/smb
us-protocol

Proceedings of PCaPAC2016, Campinas, Brazil THDAPLCO01

Data Acquisition and Data Analysis
ISBN 978-3-95450-189-2

83 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

