
GATEWARE AND SOFTWARE FRAMEWORKS FOR SIRIUS BPM
ELECTRONICS

L. M. Russo∗, J. V. F. Filho, LNLS, Campinas, SP, Brazil

Abstract
TheBrazilian Synchrotron Light Laboratory (LNLS) is de-

veloping a BPM system based on the MicroTCA.4 standard

comprised of AMC FPGA boards carrying FMC digitizers

and an AMC CPU module. In order to integrate all of the

boards into a solution and to support future applications,

two frameworks were developed. The first one, gateware

framework, is composed of a set of Wishbone B4 compati-

ble modules and tools that build up the system foundation,

including: PCIe Wishbone master; FMC digitizer interfaces;

data acquisition engines and trigger modules. The gateware

also supports the Self-Describing Bus (SDB), developed by

CERN/GSI. The second one, software framework, is based

on the ZeroMQ messaging library and aims to provide an

extensible way of supporting new functionalities to different

boards. To achieve this, this framework has a multilayered

architecture, decoupling its four main components: (i) hard-

ware communication protocol; (ii) reactor-based dispatch

engine; (iii) business logic, comprising of the specific board

functionalities; (iv) standard RPC-like interface to clients.

In this paper, motivations, challenges and limitations of both

frameworks will be discussed.

INTRODUCTION
Sirius is a new 3 GeV synchrotron light source under

construction in Brazil, with a 0.27 nm.rad natural emittance

and 518 meters circumference. The beginning of machine

installation is scheduled to the end of 2017 [1].

In this context, a BPM electronics system has been speci-

fied, designed and developed by the Beam Diagnostics team

at LNLS, reaching its final phase of long-term testing and

hardware manufacturing in the following year [2].

As the system was developed from scratch, employing

new high-performance data acquisition and communication

technologies (e.g., MicroTCA.4, FPGA, FMC, PCIe) [3],

the need for an FPGA gateware and software infrastructure

frameworks emerged. For that matter, it was sought the use

of consolidated codebases and collaborative development

through an open source approach. Examples of this were

the initial collaboration with the Warsaw University of Tech-

nology, the use of a community-driven set of repositories

aimed at building generic software/gateware modules from

the OHWR collaboration [4] and the use of projects such as

the ZeroMQmessaging library [5], the CZMQHigh-Level C

Binding library [6] and the Malamute Messaging Broker [7]

which leveraged many years of development.

In the next sections, the requirements and the details of the

these two frameworks, licensed under the copyleft GPLv3

and LGPLv3 licenses, will be described.

∗ lucas.russo@lnls.br

GATEWARE FRAMEWORK
The gateware framework consists of a set of modules,

mainly written in VHDL, that interconnect with each other

and to external interfaces. It can be used as a basis to other

designs. The general architecture is as depicted in Fig. 1.

Figure 1: Gateware Framework Architecture.

General Description
The first basic component of the framework is the Control

Interfaces, as shown in Fig. 1, and it encompasses standard
communication interfaces to a controlling node, acting as a

WishboneMaster to the gateware side. Currently, 3 types are

supported: PCIe Gen1 (for Xilinx Artix7 FPGA) and Gen2

(for Xilinx Kintex7 FPGA), with accompanying linux driver

with PIO, single buffer and scatter-gather DMA; RS232

Syscon for simple serial communication supporting auto-

baud generation; preliminary support for Ethernet MAC +

Etherbone [8] for UDP communication and userspace soft-

ware library.

The second layer, Wishbone Infrastructure, is a set of
Wishbone modules and functions that provide the general

interconnection between controllable modules (i.e., that

can receive/transmit configuration parameters and/or low-

bandwidth data) and address space enumeration with SDB

[9] support. This is the standard adopted within the frame-

work for consistently interfacing with all Control Interfaces.
The third layer, Application Modules, is where all of the

framework functionalities reside, comprising components

from third-parties and LNLS Beam Diagnostics team. A

THDAPLCO03 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
84Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Data Acquisition and Data Analysis



variety of modules are supplied, ranging from DSP modules

(e.g., adders, multipliers, dividers, filters, CORDIC), DDR

interface and Interrupt Management, to Data Acquisition,

ADC interfaces and Trigger logic.

The forth and last layer, External Board Interfaces, is a
set of board communication protocols used to interface with

Multigigabit standards (i.e., MGT) and to configure or in-

terface with board peripherals, such as: SPI (ADC, clock

circuit configuration, etc.), I2C (EEPROM, temperature/-

voltage/current sensors, etc.), 1-Wire (EEPROM) and GPIO

(LEDs, generic interfaces, etc.). Also, there are some cus-

tom interfaces implemented, like a parallel ADC interfaces

for data acquisition.

Development
The gateware framework is a development and integra-

tion effort from a diverse set of modules that took place in

the context of the Sirius BPM electronics focusing on cre-

ating generic modules, written in portable VHDL/Verilog

to avoid vendor lock-in and to encourage reusability. This

encouraged that, besides the primary target platform (i.e.,

BPM electronics), the Sirius MicroTCA.4 timing receiver

also started porting its gateware to this framework.

The development is coordinated through the GitHub plat-

form [10] following a simple branch model and fork+pull re-

quests. Currently, the framework is being versioned together

with its main application (i.e., BPM), but a separate reposi-

tory is planned for simpler integration with other projects.

SOFTWARE FRAMEWORK
The software framework, called HALCS (Hardware Ab-

straction Layer for Control Systems) [11], can be defined

as a software daemon that abstracts away a given hardware

platform and its functionalities by means of a common in-

terface to hardware and generalized set of specific applica-
tion modules. It is written in C99, implementing a simple,
yet effective, scalable object-oriented API, following the

guidelines in [12]. The framework was thought as a way

of simplifying the development and deployment of applica-

tions, while keeping it extensible and flexible. The general

framework architecture can be viewed in Fig. 2.

General Description
HALCS main components are: Hardware Abstraction

Layer (yellow solid box in Fig. 2), defining a common in-

terface for all Board Support (yellow dashed box in Fig. 2)

implementations, such as PCIe and TCP/IP; Dispatch En-
gine (green box in Fig. 2), that receives message requests
from upper-layers and safely demultiplexes them according

to the selected Board Support; Specific Modules Layer (blue
boxes in Fig. 2), implementing application-specific logic,

receiving message requests from external clients through an

RPC interface and ordering lower layers to perform a desired

set of operations; Client Interface (red boxes in Fig. 2), pro-
viding an external API for external clients to communicate

with the application.

Figure 2: Software Framework Architecture.

The framework also relies on an external standalone mes-

saging broker called Malamute [7] to provide reliability,
authentication and mailbox messaging pattern. In the future,

HALCS is planned to use, besides the mailbox pattern, a

higher-efficiency, asynchronous, stream pattern (ideal for

data acquisition applications) and, possibly, a service pattern

for modules implementing logic that can be replicated, like

some calculation engine or some data processing logic. Both

of these patterns are also available in the broker API.

Hardware Abstraction Layer
The Hardware Abstraction Layer is implemented as a

standalone software library, called LLIO, for Low-Level
Input/Output, and acts as a generic interface for hardware

operations. The selection of which interface to use (currently

PCIe or TCP/IP) is done at compile time and can be easily

changed by opting for another implemented set of LLIO
operations, as long as it follows the same LLIO interface.

Dispatch Engine
The Dispatch Engine, called DEVIO in Fig. 2, is the core

of the framework. It acts both as the entry point for a con-

structed application using the framework and a serialization

engine to safely access the hardware without the use of tra-

ditional synchronization points (e.g., mutexes, semaphores).

Instead, all of the communication is done by sending/re-

ceiving messages between layers, improving decoupling,

flexibility and avoiding programmer errors in protecting

shared resources. Typically, the DEVIO layer performs the

following steps:

1. Calling thread calls devio new () method for creating a

new instance of DEVIO layer

2. DEVIO registers the selected LLIO operations

Proceedings of PCaPAC2016, Campinas, Brazil THDAPLCO03

Data Acquisition and Data Analysis
ISBN 978-3-95450-189-2

85 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs



3. (Optionally) DEVIO tries to parse an SDB structure

located in hardware to dynamically enumerate its mod-

ules as SMIO modules

3.1. If successful, spawns each SMIOmodule as a new

CZMQ actor, executing its entry point routine and

opening an inter-thread communication (inproc),

using PAIR-PAIR ZeroMQ sockets (Pipe Protocol

in Fig. 2)

4. DEVIO opens a control socket to the calling thread, so

it can send commands to DEVIO at anytime, such as:

REGISTER SMIO, to register a new SMIO (executing

the actions of step 3.1.) and UNREGISTER SMIO, to

unregister an SMIO (executing the opposite actions of

step 3.1.)

5. DEVIO starts its event-driven reactor engine to wait for

commands from the registered SMIOs and dispatching
the appropriate messages to the LLIO layer

Specific Modules Layer
This layer is where all of the business logic resides. It is

composed of self-contained modules that implement specific

operations and communicates with lower layers by sending/

receiving messages through the PAIR-PAIR socket opened

by DEVIO. For higher layers, it uses the MLM protocol [7]

and, on top of that, a simple RPC protocol to export its

functionalities to external clients.

In order to register new functions, one would have

to fill a description structure informing its opcode, how

many and what type of the arguments it receives and

the type and size for the return value. After that, the

exported function can be implemented by following the

function signature: int (*disp table func fp)(void
*owner, void * args, void *ret). Finally, all that is
left is associating this function to the description structure

and registering it in the SMIO exported operations. All of

these actions are available in the API, through functions.

There are also two optional layers inside SMIO, called
SMPR and SMCH, showed in blue boxes Fig. 2. They can
be used to implement specific protocols (e.g., SPI, I2C, 1-

wire, GPIO) and specific operations on top of it (e.g., Clock-

distribution IC using SPI protocol, Programmable Crystal

Oscillator using I2C protocol for configuration).

Currently, the SMPR layer implements interfaces with

the OpenCores SPI and OpenCores I2C gateware modules.

These modules are controllable through a simple set of reg-

isters and implements the respective protocol. The SMCH
layer, which is independent of the SMPR and only relies

on a standard interface to communicate with it, implements

various IC interfaces, such as: ISLA216P ADC, AD9510

PLL and clock-distribution, EEPROM, Si57x crystal oscil-

lator, I2C switches, etc. In fact, one can change the SMPR
protocol of any SMCH chip by simply choosing another pro-

tocol for it. Any specificities can be controllable through the

specific SMPR protocol API, while the implementation of

both layers remain unaffected.

Client Interface
TheClient Interface is basically a set of wrapper functions

that encapsulates the necessary arguments and return types

for each SMIO exported function. There is also a generic

API for sending/receiving commands to SMIO functions

that relies on the description structures for checking the type,

arity and size of arguments. This layer forms the API in

which client programs use to communicate with a given

application implemented with HALCS.

FUTURE WORK
Currently, SMIOs only have the mailbox interface, imple-

menting a synchronous request-reply RPC, available through

Malamute. In this pattern, each SMIO receives a mailbox

in the broker and can send/receive messages to that specific

mailbox. However, in some cases, like data acquisition, a

more suitable pattern is a data stream (i.e., publish-subscribe)

in which each client that wants to receive some published

data registers to a certain topic and any control can be set
through the regular mailbox pattern API. This in fact cre-

ates 2 protocols that implement specific use cases: a high-

performance protocol for large amounts of data data (e.g.,

data acquisition); low-performance protocol for control and

monitoring (e.g., configuration parameters). In order to fix

these issues, an event API for asynchronous communication

and a stream API for high-performance data transmission is

under study and should be implemented soon.

CONCLUSION
Two frameworks for developing interfaces to hardware

application boards were presented. Currently, two applica-

tions are using the frameworks inside LNLS, namely BPM

electronics and MicroTCA timing receiver, but more are en-

visioned. New features are included with relatively ease and

new APIs for high-performance data streaming and asyn-

chronous communication will be implemented over the next

months.

ACKNOWLEDGEMENTS
The author of this paper would like to acknowledge the

collaborative work of Adrian Byszuk from Creotech Instru-

ments SA, for the development of the FPGA PCIe core and

the linux driver, Andrzej Wojeński from the Warsaw Uni-

versity of Technology, for the initial gateware and software

codes, OpenCores and Open Hardware (OHWR) collab-

orations, for an excellent combined set of software/gate-

ware/hardware projects and the initiative to embrace and

push forward the development of free and open source

projects.

REFERENCES
[1] A. R. D. Rodrigues et al., "Sirius Accelerators Status Report",

in Proc. IPAC’15, Richmond, VA, USA, May 2015, paper
TUPWA006, pp. 1403–1406.

THDAPLCO03 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
86Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Data Acquisition and Data Analysis



[2] S. R. Marques et al., "Status of the Sirius RF BPM Electron-

ics", in Proc. IBIC’14, Monterey, CA, USA, Sep. 2014, paper
WECYB3, pp. 505–509.

[3] D. O. Tavares et al., "Development of an Open-Source Hard-
ware Platform for Sirius BPM and Orbit Feedback", in Proc.
ICALEPCS’13, San Francisco, CA, USA, Oct. 2013, paper
WECOCB07, p. 1039.

[4] Open Hardware Collaboration, http://www.ohwr.org
[5] ZeroMQ Messaging Library Project, http://zeromq.org
[6] CZMQ High-Level C Binding Project, http://czmq.

zeromq.org
[7] Malamute ZeroMQ Messaging Broker Project, https://

github.com/zeromq/malamute

[8] Etherbone Core Communication Project, http://www.
ohwr.org/projects/etherbone-core

[9] Self-Describing Bus Project, www.ohwr.org/projects/
fpga-config-space

[10] Beam PositionMonitor Gateware Project, https://github.
com/lnls-dig/bpm-gw

[11] Hardware Abstraction Layer for Control Systems Project,

https://github.com/lnls-dig/halcs

[12] CLASS ZeroMQ RFC, https://rfc.zeromq.org/spec:
21/CLASS

Proceedings of PCaPAC2016, Campinas, Brazil THDAPLCO03

Data Acquisition and Data Analysis
ISBN 978-3-95450-189-2

87 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs


