
UVX CONTROL SYSTEM: AN APPROACH WITH BEAGLEBONE BLACK
S. Lescano, INSA Lyon, Villeurbanne, France

A. R. D. Rodrigues, E. P. Coelho, G. C. Pinton, J. G. R. S. Franco*, P. H. Nallin,
 Brazilian

Synchrotron Light Laboratory (LNLS), Campinas, Brazil

Abstract
UVX is a 1.37 GeV synchrotron light source that has

been in operation by the Brazilian Synchrotron Light La-
boratory (LNLS) since 1997. Its control system, which was
completely developed in-house, has received some up-
grades lately in order to get around issues from aging, im-
prove performance and reduce maintenance costs. In this
way, a new crate controller was designed. It is based on
BeagleBone Black single-board computer (SBC) [1], a
cheap open hardware and community-supported embedded
Linux platform that will be adopted for some control sys-
tem applications in Sirius [2], the upcoming brazilian light
source. In this paper, we describe an overview of the design
and results obtained.

INTRODUCTION
As shown in [3], the control system of our machine is

organized in three levels. The lowest one comprises 3U
VME-like crates with I/O cards and a local controller mod-
ule, responsible for managing these cards and communica-
tions to the upper level. We name this low-level control
system based on crates with I/O cards as LOCO (from LO-
cal COntroller).

Since the start of UVX operation, I/O cards are the same.
Most of them has only TTL digital pins and analog inputs
and outputs with 12 or 16-bit resolution. There are also spe-
cific boards for reading Pt100 temperature sensors or
counting pulses, for instance. However, LNLS Controls
Group developed three generations of local controller
boards, as shown in the next section.

UVX LOCAL CONTROLLERS TIMELINE
In a nutshell, the goal while developing a local controller

for UVX control system is always to build a reliable, low-
cost and general-purpose module to manage the crates.
Since the beginning of control system implementation, an-
other important feature is always present in our controller
designs: units of a given model run the same program, a
universal software that contains routines to read and write
all types of I/O boards and performs all possible operations
specified by high-level applications. Running local con-
trollers with a unique software simplifies maintenance
tasks and the embedded software development process.
With an architecture like that, only high-level applications
know the equipments controlled by each crate. Also, the
application protocol used in communications to controller
crates was specified by LNLS engineers and has never suf-
fered drastic changes.

First Generation: Z80 and Serial Communica-
tion

First version of UVX local controller board was based
on a Z80 microprocessor. Its software, named PSICO, was
written in assembly language. Controller’s communication
interface was designed internally and is based on RS-485.
Although these boards are in operation until today, they are
treated as a legacy system, as we don’t provide updates for
the embedded software anymore and many of their elec-
tronic components are obsolete.

Second Generation: eZ80 and Ethernet
Aiming the adoption of a widely used communication

interface standard (Ethernet), a new version of the local
controller board was developed in the early 2000s [4]. Zi-
log eZ80F91 microcontroller was the hardware platform
chosen. The embedded software was rewritten in C and re-
named to PROSAC. Some of these boards are still in oper-
ation in UVX storage ring systems, despite the lack of up-
dates for this design in the past years.

Third Generation: SBC with FreeBSD
Because second generation local controller was too

much dependent on its hardware platform (an eZ80 micro-
controller with built-in Ethernet MAC), the design of a new
controller was started. At that time, Controls Group engi-
neers wanted to experiment with the emerging world of
embedded Linux platforms too.

An industrial-class single-board computer (Advantech
PCM-4153F) was picked. Local controller software (PRO-
SAC) was completely rewritten in C, taking into account
libraries such as Pthread (POSIX threads) and the presence
of an abundant secondary memory, used for storage of
waveforms for special applications. Routines to read and
write I/O cards were implemented with the mapping of
SBC’s PC/104 bus into LOCO crate backplane bus lines.

Although we have moved to an environment which is not
hard real-time with this design, in practice all requirements
for controller operation in UVX were satisfied. Today we
have many of these local controllers under operation, nota-
bly those which interfaces to UVX storage ring high cur-
rent power supplies.

Various flavours of Unix and Linux operating systems
were tested for use with Advantech SBC. FreeBSD sur-
passed all the others because tests revealed that it was more
responsive while performing synchronized operations over
power supplies (beam energy ramp and magnets cycling).

This local controller based on Advantech single-board
computer is the most failsafe we ever made. Machine op-
erators always say that.

* guilherme.franco@lnls.br

Proceedings of PCaPAC2016, Campinas, Brazil THPOPRPO03

Hardware Technologies
ISBN 978-3-95450-189-2

91 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

Motivation for a New Design
We have been replacing local controllers of first and sec-

ond generation by third generation ones for the past years,
in order to achieve better reliability during operation or to
substitute controllers that presented some serious fault.

Because of Advantech PCM-4153F elevated cost and
also intending to evaluate BeagleBone Black in a real op-
eration environment, we started a new local controller de-
sign. Main project policy was to run practically the same
software as we do on Advantech SBCs, but using a com-
puter which costs about a tenth. Powered with Texas In-
struments AM335x processor, BeagleBone Black comes
with a Debian Linux core and other two auxiliary real-time
cores, the Programmable Real-time Units (PRUs).

HARDWARE DESIGN
We made a simple “carrier PCB” design for BeagleBone

Black, just placing in a Eurocard-sized board digital buff-
ers between BeagleBone Black GPIO pins and the LOCO
bus signals on crate backplane. The board also has a coun-
ter, used during synchronized operations over power sup-
plies (energy ramp and magnets cycling), a 7-segment dis-
play for status indication (just as it was since the first gen-
eration of local controller boards) and a reset monitoring
circuit. Figure 1 shows the design, mounted with panel and
handle.

Figure 1: The new local controller prototype.

EMBEDDED SOFTWARE OVERVIEW
 General-purpose embedded software for the local con-

troller based on BeagleBone Black is an adaptation of Ad-
vantech SBC PROSAC. Porting the software to the new
hardware platform involved some tasks.

First of all, we modified the low-level routines used to
read and write data through the 8-bit LOCO bus. In the pre-
vious design, LOCO bus was accessed through SBC’s
PC/104 bus (ISA). With BeagleBone Black, bus crate is
managed with its GPIO pins. Although we have moved to
a quite different hardware approach, the corresponding
software changes are minimal. Only a few lines of a C
source code file had to be changed.

Moreover, we made minor changes in the code, adapting
it from FreeBSD to Linux.

PROSAC Threads Structure
PROSAC runs four threads, described below.
 Main thread: launches the other threads and periodi-

cally updates a 7-segment display, which shows local
controller status.

 Reader thread: reads continually all inputs from the
I/O cards, storing these values in RAM memory.

 Networker thread: deal with client I/O operations
through a TCP/IP socket. When the client only wants
to read the inputs of the cards, the last values obtained
by the reader thread (stored in RAM) are retrieved.

 Interrupter thread: this thread is active when the con-
troller is performing synchronized operations over
power supplies. Operation of this thread assumes that
controller has in RAM memory a waveform, which is
point-by-point traversed each time it receives a trigger
pulse from UVX timing system.

Interrupter Thread Detailed
Since the third generation of UVX local controllers, in-

terrupter thread operation is based on a hardware counter,
which accumulates the number of pulses received from the
timing system since the last actuation and can be read or
reset by software. This implementation strategy was
adopted because neither FreeBSD nor Linux are real-time
systems.

For UVX power supplies synchronized operation, we
consider that if the controller can actuate between two suc-
cessive pulses of the timing system, then it works in a good
way. So interrupter thread should always read a value
equals to 0 or 1 from the hardware counter while polling
its status. A reading greater than 1 means that the controller
missed at least one in-time actuation. While designing a
new controller, we always try to keep the number of lost
pulses equals to zero or as small as possible during syn-
chronized operations.

TESTS AND THREADS TUNING
 With the BeagleBone Black “carrier board” prototype,

we first tested our embedded software to make sure that
main, reader and networker threads were operating cor-
rectly. During these first tests, board’s 7-segment display
worked properly and PROSAC could read all I/O cards
currently used in machine operation. Also, tests performed
with a standard test client showed that all commands de-
fined in our communication protocol between operations
room and embedded controllers worked perfectly.

First tests of synchronized operation of the controller ex-
hibited many situations of loss of pulses. These tests were
performed in workbench with pulse trains of most common
frequencies used in UVX.

One could think about using BeagleBone Black PRUs to
solve the issue. But this was promptly discarded, as it
would require a complete restructuring of PROSAC code.
In fact, we intend to use the PRUs only for new software
developments. And here we only wanted to port an existing
software to a new hardware platform.

THPOPRPO03 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
92Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Hardware Technologies

In order to evaluate and improve interrupter thread per-
formance under different trigger frequencies, we consid-
ered a series of tests exploring PROSAC configuration pa-
rameters and important aspects of the embedded opera-
tional system (Linux), such as its kernel configuration and
scheduling policies and priorities.

Once traditional Linux kernel is not capable of meeting
hard real-time requirements [5], our first idea was to apply
PREEMPT_RT patch [6] to the kernel. Besides, scheduling
policy of all PROSAC threads was set to the real-time op-
tion SCHED_FIFO, and their priorities were defined so
that the interrupter thread had the biggest priority. There-
fore, it could use the CPU without being preempted by any
other thread until it explicitly yields the processor. Addi-
tionally, we set BeagleBone Black CPU frequency to 1
GHz (maximum allowed), modifying its default CPU fre-
quency scaling configuration. Unfortunately, this proposal
didn’t lead to expected results, and controller continued to
loss timing system pulses despite all these efforts. With the
traditional Linux kernel, SCHED_FIFO scheduling policy
wasn’t able to decrease the number of lost pulses too.

Given the failure of PREEMPT_RT patch combined
with a real-time scheduling policy approach, our second try
was to keep the traditional Linux kernel and use its Com-
pletely Fair Scheduler (CFS), while running BeagleBone
Black CPU at 1 GHz. In opposition to the scheduler of the
first proposed solution, which allows a process to retain the
processor as long as it wants, CFS tries to give a fair
amount of CPU usage to each process or thread, taking into
account a parameter called nice value.

Threads with smaller nice values are allowed by the
scheduler to consume more processing time. For this rea-
son, setting interrupter thread niceness to the minimum (-
20) grants more CPU time for this thread only when it ef-
fectively needs, and does not starve the other threads out
completely. Furthermore, we fixed main thread niceness to
the maximum allowed (+19), since it requires no important
processing at all (it just refreshes the 7-segment display),
and reader thread niceness to +15, as it spends the majority
of its processing time waiting for inputs.

Using this approach, we varied networker thread nice pa-
rameter and the number of I/O cards connected to the test
crate in order to investigate the impact of periodically bus
readings and client TCP/IP requests over system’s overall
performance. In general, results were very good. Number
of lost pulses changed with the number of I/O boards in the
crate. Variations on networker thread nice value didn’t in-
fluence it. The only disadvantage of this configuration is
that crate boards reading rate was degraded during syn-
chronized operation. For instance, we obtained reading
rates as small as 7 Hz in some tests.

In order to increase the number of input readings during
synchronized operation, a new solution was proposed. We
kept nice values of interrupter, main and reader threads as
before, set niceness of networker thread to +10 and
changed the way reader thread works. When under normal
operation, reader thread competes for CPU time with all
the others. Under synchronized operation, it is disabled,
and a complete reading of all inputs is performed after

every controller actuation, inside interrupter thread. As a
result, we achieved a reading rate equal to the frequency of
received pulses, without increasing the number of lost
pulses. Table 1 summarizes obtained results for two trigger
frequencies. Tests were performed with 2 I/O cards on crate
and a TCP/IP client requesting 1000 readings per second.

Table 1: Interrupter Thread Performance
Frequency (Hz) Total pulses Lost pulses

512 5,376,065 8 (0.0001 %)
1000 6,050,225 18 (0.0003 %)

CONCLUSION
 Tests showed that BeagleBone Black can serve as a

hardware platform for UVX local controllers. The new de-
sign has an acceptable performance during synchronized
operation, comparable to that of the previous one. We have
already put in operation two local controllers based on Bea-
gleBone Black. Their functioning is satisfactory. A batch of
printed circuit boards was ordered for design replication.

We are also considering to use another SBC in UVX con-
troller modules: BeagleBone Green, which is fully compat-
ible and cheaper than BeagleBone Black. The main differ-
ence between these two boards is the lack of a video output
interface on BeagleBone Green. Since a video interface is
completely useless for our applications, this is not a prob-
lem. We have tested in workbench the new UVX local con-
troller prototype with BeagleBone Green too, and results
obtained are the same.

REFERENCES
[1] BeagleBoard.org, http://beagleboard.org
[2] J. P. S. Martins et al., “Sirius control system: design, imple-

mentation strategy and measured performance”, in Proc.
ICALEPCS’15, Melbourne, Australia, Oct. 2015, pp. 456-
459.

[3] J. G. Franco et al., “LNLS control system”, in Proc.
ICALEPCS’99, Trieste, Italy, Oct. 1999, pp. 651-653.

[4] J. G. R. S. Franco et al., “Upgrading the LNLS control system
from a proprietary to a commercial communications environ-
ment”, in Proc. EPAC’04, Lucerne, Switzerland, Jul. 2004,
pp. 530-532.

[5] R. Love, “Process scheduling”, in Linux Kernel Development:
Addison-Wesley, 2010, pp. 64-65.

[6] Real-Time Linux, https://wiki.linuxfoundation.org
/realtime/start

Proceedings of PCaPAC2016, Campinas, Brazil THPOPRPO03

Hardware Technologies
ISBN 978-3-95450-189-2

93 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

