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Abstract 
UVX is a 1.37 GeV synchrotron light source that has 

been in operation by the Brazilian Synchrotron Light La-
boratory (LNLS) since 1997. Its control system, which was 
completely developed in-house, has received some up-
grades lately in order to get around issues from aging, im-
prove performance and reduce maintenance costs. In this 
way, a new crate controller was designed. It is based on 
BeagleBone Black single-board computer (SBC) [1], a 
cheap open hardware and community-supported embedded 
Linux platform that will be adopted for some control sys-
tem applications in Sirius [2], the upcoming brazilian light 
source. In this paper, we describe an overview of the design 
and results obtained. 

INTRODUCTION 
As shown in [3], the control system of our machine is 

organized in three levels. The lowest one comprises 3U 
VME-like crates with I/O cards and a local controller mod-
ule, responsible for managing these cards and communica-
tions to the upper level. We name this low-level control 
system based on crates with I/O cards as LOCO (from LO-
cal COntroller). 

Since the start of UVX operation, I/O cards are the same. 
Most of them has only TTL digital pins and analog inputs 
and outputs with 12 or 16-bit resolution. There are also spe-
cific boards for reading Pt100 temperature sensors or 
counting pulses, for instance. However, LNLS Controls 
Group developed three generations of local controller 
boards, as shown in the next section. 

UVX LOCAL CONTROLLERS TIMELINE 
In a nutshell, the goal while developing a local controller 

for UVX control system is always to build a reliable, low-
cost and general-purpose module to manage the crates. 
Since the beginning of control system implementation, an-
other important feature is always present in our controller 
designs: units of a given model run the same program, a 
universal software that contains routines to read and write 
all types of I/O boards and performs all possible operations 
specified by high-level applications. Running local con-
trollers with a unique software simplifies maintenance 
tasks and the embedded software development process. 
With an architecture like that, only high-level applications 
know the equipments controlled by each crate. Also, the 
application protocol used in communications to controller 
crates was specified by LNLS engineers and has never suf-
fered drastic changes. 

First Generation: Z80 and Serial Communica-
tion 

First version of UVX local controller board was based 
on a Z80 microprocessor. Its software, named PSICO, was 
written in assembly language. Controller’s communication 
interface was designed internally and is based on RS-485. 
Although these boards are in operation until today, they are 
treated as a legacy system, as we don’t provide updates for 
the embedded software anymore and many of their elec-
tronic components are obsolete. 

Second Generation: eZ80 and Ethernet 
Aiming the adoption of a widely used communication 

interface standard (Ethernet), a new version of the local 
controller board was developed in the early 2000s [4]. Zi-
log eZ80F91 microcontroller was the hardware platform 
chosen. The embedded software was rewritten in C and re-
named to PROSAC. Some of these boards are still in oper-
ation in UVX storage ring systems, despite the lack of up-
dates for this design in the past years. 

Third Generation: SBC with FreeBSD 
Because second generation local controller was too 

much dependent on its hardware platform (an eZ80 micro-
controller with built-in Ethernet MAC), the design of a new 
controller was started. At that time, Controls Group engi-
neers wanted to experiment with the emerging world of 
embedded Linux platforms too. 

An industrial-class single-board computer (Advantech 
PCM-4153F) was picked. Local controller software (PRO-
SAC) was completely rewritten in C, taking into account 
libraries such as Pthread (POSIX threads) and the presence 
of an abundant secondary memory, used for storage of 
waveforms for special applications. Routines to read and 
write I/O cards were implemented with the mapping of 
SBC’s PC/104 bus into LOCO crate backplane bus lines. 

Although we have moved to an environment which is not 
hard real-time with this design, in practice all requirements 
for controller operation in UVX were satisfied. Today we 
have many of these local controllers under operation, nota-
bly those which interfaces to UVX storage ring high cur-
rent power supplies. 

Various flavours of Unix and Linux operating systems 
were tested for use with Advantech SBC. FreeBSD sur-
passed all the others because tests revealed that it was more 
responsive while performing synchronized operations over 
power supplies (beam energy ramp and magnets cycling). 

This local controller based on Advantech single-board 
computer is the most failsafe we ever made. Machine op-
erators always say that. 

 ___________________________________________  
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Motivation for a New Design 
We have been replacing local controllers of first and sec-

ond generation by third generation ones for the past years, 
in order to achieve better reliability during operation or to 
substitute controllers that presented some serious fault. 

Because of Advantech PCM-4153F elevated cost and 
also intending to evaluate BeagleBone Black in a real op-
eration environment, we started a new local controller de-
sign. Main project policy was to run practically the same 
software as we do on Advantech SBCs, but using a com-
puter which costs about a tenth. Powered with Texas In-
struments AM335x processor, BeagleBone Black comes 
with a Debian Linux core and other two auxiliary real-time 
cores, the Programmable Real-time Units (PRUs). 

HARDWARE DESIGN 
We made a simple “carrier PCB” design for BeagleBone 

Black, just placing in a Eurocard-sized board digital buff-
ers between BeagleBone Black GPIO pins and the LOCO 
bus signals on crate backplane. The board also has a coun-
ter, used during synchronized operations over power sup-
plies (energy ramp and magnets cycling), a 7-segment dis-
play for status indication (just as it was since the first gen-
eration of local controller boards) and a reset monitoring 
circuit. Figure 1 shows the design, mounted with panel and 
handle. 
 

 
Figure 1: The new local controller prototype. 

EMBEDDED SOFTWARE OVERVIEW 
 General-purpose embedded software for the local con-

troller based on BeagleBone Black is an adaptation of Ad-
vantech SBC PROSAC. Porting the software to the new 
hardware platform involved some tasks. 

First of all, we modified the low-level routines used to 
read and write data through the 8-bit LOCO bus. In the pre-
vious design, LOCO bus was accessed through SBC’s 
PC/104 bus (ISA). With BeagleBone Black, bus crate is 
managed with its GPIO pins. Although we have moved to 
a quite different hardware approach, the corresponding 
software changes are minimal. Only a few lines of a C 
source code file had to be changed. 

Moreover, we made minor changes in the code, adapting 
it from FreeBSD to Linux. 

PROSAC Threads Structure 
PROSAC runs four threads, described below. 
 Main thread: launches the other threads and periodi-

cally updates a 7-segment display, which shows local 
controller status. 

 Reader thread: reads continually all inputs from the 
I/O cards, storing these values in RAM memory. 

 Networker thread: deal with client I/O operations 
through a TCP/IP socket. When the client only wants 
to read the inputs of the cards, the last values obtained 
by the reader thread (stored in RAM) are retrieved. 

 Interrupter thread: this thread is active when the con-
troller is performing synchronized operations over 
power supplies. Operation of this thread assumes that 
controller has in RAM memory a waveform, which is 
point-by-point traversed each time it receives a trigger 
pulse from UVX timing system. 

Interrupter Thread Detailed 
Since the third generation of UVX local controllers, in-

terrupter thread operation is based on a hardware counter, 
which accumulates the number of pulses received from the 
timing system since the last actuation and can be read or 
reset by software. This implementation strategy was 
adopted because neither FreeBSD nor Linux are real-time 
systems. 

For UVX power supplies synchronized operation, we 
consider that if the controller can actuate between two suc-
cessive pulses of the timing system, then it works in a good 
way. So interrupter thread should always read a value 
equals to 0 or 1 from the hardware counter while polling 
its status. A reading greater than 1 means that the controller 
missed at least one in-time actuation. While designing a 
new controller, we always try to keep the number of lost 
pulses equals to zero or as small as possible during syn-
chronized operations. 

TESTS AND THREADS TUNING 
 With the BeagleBone Black “carrier board” prototype, 

we first tested our embedded software to make sure that 
main, reader and networker threads were operating cor-
rectly. During these first tests, board’s 7-segment display 
worked properly and PROSAC could read all I/O cards 
currently used in machine operation. Also, tests performed 
with a standard test client showed that all commands de-
fined in our communication protocol between operations 
room and embedded controllers worked perfectly. 

First tests of synchronized operation of the controller ex-
hibited many situations of loss of pulses. These tests were 
performed in workbench with pulse trains of most common 
frequencies used in UVX. 

One could think about using BeagleBone Black PRUs to 
solve the issue. But this was promptly discarded, as it 
would require a complete restructuring of PROSAC code. 
In fact, we intend to use the PRUs only for new software 
developments. And here we only wanted to port an existing 
software to a new hardware platform. 
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In order to evaluate and improve interrupter thread per-
formance under different trigger frequencies, we consid-
ered a series of tests exploring PROSAC configuration pa-
rameters and important aspects of the embedded opera-
tional system (Linux), such as its kernel configuration and 
scheduling policies and priorities.  

Once traditional Linux kernel is not capable of meeting 
hard real-time requirements [5], our first idea was to apply 
PREEMPT_RT patch [6] to the kernel. Besides, scheduling 
policy of all PROSAC threads was set to the real-time op-
tion SCHED_FIFO, and their priorities were defined so 
that the interrupter thread had the biggest priority. There-
fore, it could use the CPU without being preempted by any 
other thread until it explicitly yields the processor. Addi-
tionally, we set BeagleBone Black CPU frequency to 1 
GHz (maximum allowed), modifying its default CPU fre-
quency scaling configuration. Unfortunately, this proposal 
didn’t lead to expected results, and controller continued to 
loss timing system pulses despite all these efforts. With the 
traditional Linux kernel, SCHED_FIFO scheduling policy 
wasn’t able to decrease the number of lost pulses too. 

Given the failure of PREEMPT_RT patch combined 
with a real-time scheduling policy approach, our second try 
was to keep the traditional Linux kernel and use its Com-
pletely Fair Scheduler (CFS), while running BeagleBone 
Black CPU at 1 GHz. In opposition to the scheduler of the 
first proposed solution, which allows a process to retain the 
processor as long as it wants, CFS tries to give a fair 
amount of CPU usage to each process or thread, taking into 
account a parameter called nice value. 

Threads with smaller nice values are allowed by the 
scheduler to consume more processing time. For this rea-
son, setting interrupter thread niceness to the minimum (-
20) grants more CPU time for this thread only when it ef-
fectively needs, and does not starve the other threads out 
completely. Furthermore, we fixed main thread niceness to 
the maximum allowed (+19), since it requires no important 
processing at all (it just refreshes the 7-segment display), 
and reader thread niceness to +15, as it spends the majority 
of its processing time waiting for inputs. 

Using this approach, we varied networker thread nice pa-
rameter and the number of I/O cards connected to the test 
crate in order to investigate the impact of periodically bus 
readings and client TCP/IP requests over system’s overall 
performance. In general, results were very good. Number 
of lost pulses changed with the number of I/O boards in the 
crate. Variations on networker thread nice value didn’t in-
fluence it. The only disadvantage of this configuration is 
that crate boards reading rate was degraded during syn-
chronized operation. For instance, we obtained reading 
rates as small as 7 Hz in some tests. 

In order to increase the number of input readings during 
synchronized operation, a new solution was proposed. We 
kept nice values of interrupter, main and reader threads as 
before, set niceness of networker thread to +10 and 
changed the way reader thread works. When under normal 
operation, reader thread competes for CPU time with all 
the others. Under synchronized operation, it is disabled, 
and a complete reading of all inputs is performed after 

every controller actuation, inside interrupter thread. As a 
result, we achieved a reading rate equal to the frequency of 
received pulses, without increasing the number of lost 
pulses. Table 1 summarizes obtained results for two trigger 
frequencies. Tests were performed with 2 I/O cards on crate 
and a TCP/IP client requesting 1000 readings per second. 
 

Table 1: Interrupter Thread Performance  
Frequency (Hz) Total pulses Lost pulses 

512 5,376,065 8 (0.0001 %) 
1000 6,050,225 18 (0.0003 %) 

CONCLUSION 
 Tests showed that BeagleBone Black can serve as a 

hardware platform for UVX local controllers. The new de-
sign has an acceptable performance during synchronized 
operation, comparable to that of the previous one. We have 
already put in operation two local controllers based on Bea-
gleBone Black. Their functioning is satisfactory. A batch of 
printed circuit boards was ordered for design replication. 

We are also considering to use another SBC in UVX con-
troller modules: BeagleBone Green, which is fully compat-
ible and cheaper than BeagleBone Black. The main differ-
ence between these two boards is the lack of a video output 
interface on BeagleBone Green. Since a video interface is 
completely useless for our applications, this is not a prob-
lem. We have tested in workbench the new UVX local con-
troller prototype with BeagleBone Green too, and results 
obtained are the same. 
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