

CONTROL SYSTEM EVOLUTION AND THE IMPORTANCE OF TRIAL
AND ERROR

P. Duval, M. Lomperski, DESY, Hamburg, Germany
J. Bobnar, Cosylab, Ljubljana, Slovenia

Abstract

In this paper we address the importance and benefits of
trial and error in control system evolution. Here we refer
to the control systems of particle accelerators and large
machines, whose control systems, although complex, will
not lead to catastrophe in case of failure. We likewise
focus on the evolution of control system software,
although the issues under discussion will apply to and are
often driven by control system hardware. We shall
contrast classical Darwinian evolution via natural
selection with control system evolution, which proceeds
rather via artificial selection, although there are numerous
software memes which tend to replicate according to their
'fitness'. The importance of general trial and error, i.e.
making mistakes and learning from them, in advancing
the capabilities of a control system will be explored,
particularly as concerns decision making and overcoming
Einstellung.

INTRODUCTION
A mature accelerator control system will be able to

address a wide variety of problems which might arise
throughout the controlled facility’s natural lifecycle.
Solving new problems or a push to provide better
solutions to old problems will generally lead to control
system evolution, even if this amounts to little more than
keeping up with industrial or commercial components.
The way one goes about problem solving will in turn have
a marked influence on the pace of this evolution. We will
discuss many of these aspects below, finishing with a few
concrete examples of control system evolution at play.

GOALS AND PROBLEM SOLVING
The God Complex and Einstellung

When we are well-versed in our control system and at
the same time faced with a new problem or challenge we
are apt to fall prey to the God Complex, i.e. that “no
matter how complicated the problem, you believe that
your solution is correct.” [1, 2] This is furthermore often
compounded by what psychologists refer to as the
Einstellung effect, or the “predisposition to solve a given
problem in a specific manner even though better or more
appropriate methods of solving the problem exist”. [3,4]

The danger is not that our problem won’t get solved. It
most likely will. The danger is that we might not only
miss an opportunity to explore new ideas, we might also
end up wasting resources, and/or missing the big picture
entirely due to our rush to implement a known solution.

Priming and Anchoring
Indeed our choices in problem solving and decision

making are often due to an implicit memory effect known
as priming [5], where exposure or familiarity with one
stimulus (or solution paradigm) can influence our
response to another. The classic trivial example: “How
many animals did Moses take on the ark?” (answer: 0)
might appear to have little to do with our decision making
until we realize that our expectations can be easily
primed, a case of priming known as anchoring [5]. For
example, imposing an artificial deadline of one week to
try some solution automatically suggests a level of
difficulty. Worse, refusing to consider a new solution
because “everyone else does it differently” suggests a
knowledgeable rejection of the new solution. Unfounded
expressions such as “one week” or “everyone else” often
serve only to anchor our expectations at some level.

Accumulated Advantage
The previous example of anchoring (“everyone else

does it differently”) is also an example of the effect of
accumulated advantage, often referred to as the Matthew
Effect, (from Matthew 25:29 in the King James version of
the Bible) [6]. In point of fact, our opinions are strongly
related to and often dependent on those of others. The
crowded restaurant must serve better food than the empty
one next door! In an experiment by Duncan Watts [6],
two sets of college students could download garage band
music from two web sites. The sites were identical except
that in one case the students could see the likes and
downloads of everyone else. It’s not surprising that in
one case there were a handful of hit songs and in the other
the likes and downloads showed a flat distribution.

Trial and Error
We should in any case be aware of the aforementioned

challenges to our problem solving abilities. Whether we
admit that we already know the solution to a new problem
or not, the practice of trial-and-error cannot be avoided.
The basic algorithm of trial-and-error can be described as:

1) Define what constitutes a solution to our problem.
2) Try something.
3) Check to see if the problem is solved. If not:
4) Modify something into a more promising direction

and repeat step 3). Or, if the problem is solved:
5) Quit.

WECSPLCO02 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
6Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Control Systems

The psychological effects we have just discussed will
of course influence the something that we initially try in
step 2). In fact, if there is any kind of time pressure the
best bet is indeed to go with our best over-all hunch. If
on the other hand there is a time-window for bold
experimentation, trying several somethings might lead to
remarkable improvements.

EVOLUTION
Evolution, Darwinian or otherwise, naturally progresses

via trial-and-error. The incremental evolutionary steps
might occur by chance, as in the case of the natural world,
or by design as in the case of control system evolution.
Either way, the measure of success is the ability to
replicate. Thus there is an implicit drive to improve.

Darwinian Evolution
In Darwinian evolution [7] the replicating unit is the

gene. Any mutation which leads to a greater chance of
survival will in turn lead to an organism’s genetic
material replicating itself more often, which is what we
mean by improvement. Evolution by natural selection is
of course slow and has a direction. That this occurs by
chance means that evolutionary changes cannot be
reengineered in order to improve performance. Any
improvement comes entirely by trial-and-error.

An oft cited proof of intelligent design by creationists is
the eye, which is so complex that it couldn’t possibly
have happened by chance and must have had a designer.
A billion years, though, is ample time for cells initially
able to only distinguish dark from light to successively
evolve into such a remarkable organ. More to the point,
the design is actually rather clumsy, as recognized already
in the 19th century by Hermann von Helmholtz. No
engineer would route the wiring leading from a camera’s
photo cells back into the path of the light source and then
bundle it all into a thick cable near the center of the
collecting surface, thereby creating a blind spot!

There is no chance to reengineer this into a more
sensible solution. Nor is there any chance that a random
mutation will fix the design flaws.

It is nonetheless instructive to recognize how incredibly
well the eye does work (in tandem with our visual cortex).
The design flaws are practically irrelevant, a point which
should be remembered when the temptation to refactor
complicated, yet well-working, software arises.

Software Evolution
Software evolution is driven by design decisions from

the very beginning. Although survival might still be of
the fittest, the agent of change is artificial- rather than
natural-selection, and the replicating unit will be the
meme, the smallest idea that gets transferred within a
culture [8] (e.g. the idea of sockets or threads, but not
necessarily the implementation of them).

Manny Lehman identified three categories of software,
S- (specific) programs, P- (procedural) programs, and E-
(evolutionary) programs [9]. S-programs are written once
for a specific purpose. P-programs implement a set of

procedures only (e.g. play chess). E-programs perform
some real-world activity and adapt to the environment
and circumstances in which they run.

As much as we might wish particle accelerator control
systems to be P-programs, they are in fact E-programs
and necessarily evolve. In fact, as the environment in
which a control system operates does indeed evolve, one
of Lehman’s Laws [9] asserts that the quality of the
control system will decline unless it also evolves.

Here, however, we do have and often utilize the ability
to refactor bad or clumsy design decisions. Of course, the
question remains as to what a bad design is and (like the
eye) as to whether it is in the end worth the risk of
changing a (well-running and complex) running system
merely for the sake of improving the design.

Complex software might also contain vestige routines
(analogous to the appendix) which have no practical
purpose but continue to be accessed by vintage
application programs and are therefore required to exist.
Thus, API breaks in reusable software such as control
system libraries should be avoided when possible,
including the disposal of deprecated API routines or class
methods, unless the consequences of doing so are
understood beforehand.

In addition to keeping pace with an evolving hardware
environment, control system software will evolve on its
own accord in order to improve or introduce functionality.
The pace of evolution here will be strongly dependent on
the developer’s susceptibility to the psychological effects
mentioned in the previous section.

Regardless of pace, any real evolutionary change will
occur via trial-and-error. Typically, coding modifications
will be run through various unit tests (a tight trial-and-
error loop) until there is a new release candidate. The
next trial might occur in the field when the software is
deployed. After deployment, however, the cost of error
will be much higher. In the case of accelerator control
there is fortunately little or no chance of catastrophic error
(as there is in airplanes or nuclear power). Nonetheless
an error can lead to downtime or damage to equipment.
Thus the cost of error should be examined along with
rollback strategies prior to any new deployment.

EXAMPLES
Control System Protocol

One of the problems we sometimes have to deal with is
an unacceptably high load (CPU and/or network) on a
control system server. If this load is primarily due to
information transfer from server to client then we have an
issue with the control system protocol.

The TINE [10] control system makes use of the device
server paradigm, where a server exposes control system
elements as instances of devices and offers access to their
attributes and actions through properties. It also offers
publish-subscribe data acquisition, which in itself goes a
long way in reducing unnecessary load on a server due to
data transfer to multiple clients. However if client
applications obtain data via repetitive non-persistent

Proceedings of PCaPAC2016, Campinas, Brazil WECSPLCO02

Control Systems
ISBN 978-3-95450-189-2

7 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

transactions (polling) then there is no load reduction from
publish-subscribe. The situation can be compounded
many-fold if a server with many device instances (e.g. a
vacuum pump, beam position monitor, or power supply
controller - PSC) is requested to deliver information from
all elements one-at-a-time. And precisely this is an all too
common occurrence with simple client panel applications.

When faced with this situation in 2009 with multiple
ddd [11] clients accessing the FLASH PSCs we decided
to eschew the traditional split-the-load-among-multiple-
servers approach and add a new feature to the control
system protocol called contract coercion [12].

As the PSC server is not only prepared to, but prefers to
send property information for all PSC instances for a
given property as a multi-channel array, we addressed the
question “Can we coerce a client’s synchronous request
for the value of a property into a monitor for all values of
that property?” We answered yes and then introduced
contract coercion. The initial results were more than
encouraging as the load on the server was effectively
decimated without modifying a single line of client code.

To be sure, there was a significant amount of tight-loop
trial-and-error with unit tests, etc. prior to deployment,
but we were nevertheless aware of the costs of unforeseen
errors beforehand. We assumed, based on prior testing,
that the likelihood of a serious error on most clients was
extremely small. If an exotic client did have an error we
based the decision to rollback or not on how critical to
operations the exotic client was and whether the error
appeared immediately or some significant time later.

In the end, no rollbacks were ever necessary. Several
errors were nonetheless encountered and repaired in the
months following initial deployment. Likewise, the
ensuing years saw several quality-of-service additions to
the initial contract coercion implementation, each with its
own trial-and-error process.

Control System Services
The TINE control system offers many central services,

among them a plug-and-play system concerning name
resolution.

The TINE Equipment Name Server (ENS) maintains a
device server database and provides address information
when a client needs to contact a control system element.
The ENS database can of course be modified by an
administrator, but in general it is updated automatically.
The plug-and-play mechanism will add a new server to
the database or update a server’s meta-information with
every server start.

This level of automation requires a good deal of trial-
and-error whenever new features are added. The ENS
must not only guarantee a unique entry for a control
system server it must also inform any server trying to
usurp an existing name that its request was denied. The
requested names and meta- information of any new server
must also be validated, etc.

When we make modifications here, however we are
modifying a central service rather than the control system
protocol itself. What are the costs of error in this case?

The ENS would appear to offer a critical service, in
contrast to, say, central archive or alarm servers. In fact it
is semi-critical. All clients already have a fallback
mechanism (using the last locally cached address in the
event of address resolution failure) when the ENS is not
operational. The worst that can happen is either 1) a new
server will not be able to plug itself into the system, or 2)
an existing server starting on a new host will not be able
to modify its address information.

The other TINE central services are even less critical in
that operations are never threatened in the event of error.

Applications
A good example of a specific application with on-going

trial-and-error is the Operation History Viewer in TINE
Studio [13, 14]. This application shows the machine state
information (including problems) over any selected time
range. The problems state indicates non-availability of the
machine and can be divided into sub-systems, where one
has the ability to browse through the fatal alarms
responsible for the downtime. The goal is to have a fully
automatic calculation of operation and availability history.
As blame for non-availability is assigned to fatal alarms,
we see that the application consists of more than a mere
presentation of data, and involves, among other services,
the central alarm system in a vital way. We may not break
free from the trial-and-error loop here for some time to
come and have added the ability to post-correct both the
state information and the availability information (by a
machine coordinator) over any time interval.

The costs of error here, as for most applications, apply
almost exclusively to the application itself, and will have
no impact on operations unless the application is critical
to operations (which this isn’t). This is not to say that we
can make errors with impunity. Once an application is
regularly used, any degradation in quality of service will
of course result in unhappy customers. Ensuring that the
most-used features continue to work properly is generally
sufficient to allow deployment of a new version. Should
an error be discovered, a rollback can easily be made
while the error is dealt with.

CONCLUSIONS
Control system evolution will occur if for no other

reason than the necessity of keeping pace with the
commercial and industrial world. Real innovation in
control system software will involve a trial-and-error
period. This period can be extensive or even continual,
but primarily constitutes what is meant by control system
evolution. Dramatic improvement most often occurs if we
resist the psychological pressures to solve any new
problems in a tried-and-true manner and admit that we
perhaps don’t already know the best course of action.
Often enough, deadlines will require us to play it safe, but
if we have a large enough time window for development
such that we can test several solutions to the same
problem then we can often make great strides in the
advancement of our control systems.

WECSPLCO02 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
8Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Control Systems

REFERENCES
 [1] A. Cochrane,

https://en.wikipedia.org/wiki/Archie_Cochran
e

 [2] T. Harford, “Trial, Error and the God Complex”;
https://www.ted.com/.

 [3] A. Luchins, "Mechanization in problem solving: The effect
of Einstellung". Psychological Monographs, 1942.

 [4] M. Bilali and P. McLeod, “Why Your First Idea Can Blind
You to a Better One”, Scientific American, March 2014.

 [5] D. Kahneman, “Thinking Fast and Slow”, Penguin Books,
2011.

 [6] S. Pinker, “The Better Angels of Our Nature”, Viking
Press, 2011.

 [7] R. Dawkins, “The Blind Watchmaker” (and references
therein), W.W. Norton & Co., 1986.

 [8] R. Dawkins, “The Selfish Gene”, Oxford Press, 1976.
 [9] M. Lehman,

https://en.wikipedia.org/wiki/Software_evolu
tion

[10] TINE, http://tine.desy.de
[11] jddd, http://jddd.desy.de
[12] P. Duval and S. Herb, “The TINE Control System Protocol:

How to Achieve High Scalability and Performance”, in
Proc. PCaPAC’10, paper WECOAA02.

[13] P. Duval, M. Lomperski, and J. Bobnar, “TINE Studio,
Making Life Easy for Administrators, Operators and
Developers” Proc. ICALEPCS’15, paper WEPGF133.

[14] P. Duval, M. Lomperski, H. Ehrlichmann, and J. Bobnar,
“Automated Availability Statistics”, presented at
PCaPAC’16, Campinas Brazil, Oct. 2016, paper
WEPOPRPO18, this conference.

, in

Proceedings of PCaPAC2016, Campinas, Brazil WECSPLCO02

Control Systems
ISBN 978-3-95450-189-2

9 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

