
SOFTWARE TESTS AND SIMULATIONS FOR CONTROL
APPLICATIONS BASED ON VIRTUAL TIME

M. Hierholzer∗, M. Killenberg, T. Kozak, N. Shehzad, G. Varghese,
M. Viti, DESY, Hamburg, Germany

Abstract
Ensuring software quality is important, especially for con-

trol system applications. Writing tests for such applications
requires replacing the real hardware with a virtual imple-
mentation in software. Also the rest of the control system
which interacts with the application must be replaced with
a mock. In addition, time must be controlled precisely. We
present the VirtualLab framework as part of the Chimera
Tool Kit (formerly named MTCA4U). It has been designed
to help implementing such tests by introducing the concept
of virtual time, and combining it with an implementation
basis for virtual devices and plant models. The virtual de-
vices are transparently plugged into the application in place
of real devices. Also tools are provided to simplify the simu-
lated interaction with other parts of the control system. The
framework is designed modularly so that virtual devices and
model components can be reused to test different parts of
the control system software. It interacts seamlessly with the
other libraries of the Chimera Tool Kit such as DeviceAccess
and the control system adapter.

INTRODUCTION
To test software automatically, a virtual test environment

has to be provided. With the VirtualLab framework the
necessary tools for this tasks are available. The framework
is part of the Chimera Tool Kit and is available as open-
source software [1].
This paper explains the procedures of writing tests for

control applications at the example of a low-level RF con-
troller server for FLASH-like machines. The low-level RF
system used at FLASH [2] and XFEL [3] uses ADC and
DAC boards based on MicroTCA.4 [4], connected to down
converters and vector modulators for 1.3GHz controls. The
machine is pulsed with 10Hz. The control loop for the fast
phase and amplitude stabilisation is running on FPGAs on
the ADC/DAC boards. Trigger pulses are sent to the FPGA
and with delay to the low-level RF controller server. The
server is based on the DOOCS middleware and running on
the frontend CPUs. It presents the interface to the control
system and performs several slow tasks, like generating ta-
bles for setpoint, feed-forward, gain etc. based on input
parameters provided by the operator, and executes slow con-
trol loops for drift compensation and adaptive feed-forward.
This controller server is a critical element required for the op-
eration of the machine. Therefore thorough tests are crucial
to prevent machine failures and unnecessary down time.

To avert regression failures of the software staying unde-
tected and being included in the production system during
∗ martin.hierholzer@desy.de

the next software update, automated continuous integration
tests should be implemented. This requires full automation
of the tests.

VIRTUAL DEVICES
Virtual devices can be used to achieve a full automation

of tests. In contrast to testing on real hardware devices, tests
based on virtual devices can fully govern the function of
the device. Faults can easily be injected to test exception
handling.

Figure 1 shows the layout of the test example. The test rou-
tines take control over the low-level RF controller server to be
tested. The server is connected through a dummy register set
with a state machine and a control loop algorithm reflecting
the relevant behaviour of the FPGA firmware. This algo-
rithm is connected through signal sinks and signal sources
with a simple cavity model. These signal sinks and sources
help creating the modularity needed for reusing parts of the
virtual components for different tests.

A simple example for a test routine is shown in Figure 2.
The test routine first sends the command to ramp up the
gradient through the control system. Next it waits until
the procedure is completed and finally it tests the result by
comparing the actual current gradient of the cavity model
with the nominal set point.

The virtual devices used for the test may be an imperfect
approximation of the real devices. This presents no issue
if the approximation is good enough for the application to
function normally. In this particular case the actual control
loop is not part of the test, which strongly relaxes the require-
ments on the cavity model. The control loop implementation
and the cavity model can be tuned to each other to minimise
the effort. Faults (like quenches of super-conducting cavi-
ties) don’t need to be properly simulated, as long as there
is no sensitivity in the tested software to those details. Sim-
ply switching off the measured signal might be enough to
simulate such condition.

USE VIRTUAL TIME TO AVOID RACE
CONDITIONS

The example test routine shown in Figure 2 uses a system
time-based sleep function to wait until the ramup procedure
is completed. This approach severly suffers from potential
race conditions: A fault shall be injected at a particular
point of the rampup procedure. The test routine is running
asynchronously to the server in a separate thread. To inject
the fault in the right moment, the sleep time between starting
the rampup procedure and the fault injection has to be tuned
precisely. Otherwise, the fault may be injected in a different

WECSPLCO03 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
10Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Control Systems

Figure 1: The layout of the test of the low-level RF controller server based on VirtualLab. The box at the bottom represents
the low-level RF controller server to be tested.

// tell the server to ramp up the RF
doocsSet("//AUTOMATION/START_RAMPUP", 1);

// wait until shortly before some safety check
sleep((numberOfRfPulsesUntilCheck-1)*100ms + someExtraTime);

// inject a fault
cavityModel.injectFault();

// wait one RF pulse to perform the check
sleep(100ms);

// check if drive signal was switched off
BOOST_CHECK(cavityModel.driveSignal == 0.0);

Figure 2: Pseudo-code of a simple test routine, which is not
based on virtual time and thus subject to race conditions.

RF pulse than intended, which might trigger some other,
unexpected error handling. If the system is busy with other
tasks, the wakeup might be delayed, or the server might take
slightly longer than usual and the wakeup might relativly be
early. Spurious false failues of the tests might occur as well
as occasioally passing the test successfully despite of bugs
in the code.
To eliminate these race conditions, the threads need to

be synchronised properly. This can be done by introducing
the concept of virtual time. Figure 3 shows a test routine,
where the system time-based sleep has been replaced with a
command controlling the virtual time. This command will
instruct the virtual timer shown in Figure 1 to send as many
timer events as necessary to move forward by the requested
amount of virtual time. This will trigger the generation of
data by the model. Also the appropriate number of RF pulse

// tell the server to ramp up the RF
doocsSet("//AUTOMATION/START_RAMPUP", 1);

// synchronously wait until before the safety check
virtualTimer.advanceTime(numberOfRfPulsesUntilCheck*100ms);

// inject a fault
cavityModel.injectFault();

// synchronously wait for one RF pulse
virtualTimer.advanceTime(100ms);

// check if drive signal was switched off
BOOST_CHECK(cavityModel.driveSignal == 0.0);

Figure 3: Pseudo-code of a simple test routine based on
virtual time to avoid race conditions.

interrupts will be sent to the control server to trigger its
processing.
To make sure no race conditions can take place, it also

has to be made sure that the server has finished processing
before the command returns. The exact implementation for
this may depend on the control system middleware and/or
the application.

ACCOUNT FOR SLOW MODEL
COMPUTATIONS

A typical signal sampling frequency for the RF control
application is around 9MHz. Today’s CPUs are not capable
of computing the simple cavitymodel at this frequency by far,
especially if multi-cavity setups have to be taken into account.
As shown in Figure 4, there are no samples recorded during
the gap between the RF pulses. Typical pulse lenghts are in

Proceedings of PCaPAC2016, Campinas, Brazil WECSPLCO03

Control Systems
ISBN 978-3-95450-189-2

11 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

9 MHz
sampling frequency

9 MHz
sampling frequency

no samples recorded t

Figure 4: Typical signal sampling for pulsed mode operation.
The ratio of pulse lengthes and gap time between the pulses
is not to scale.

onCompute()

buffer

getValue()

virtual time t

function call information flow

v
a

lid
ity

 p
e

rio
d

v
a

lid
ity

 p
e

rio
d

m
a

x
im

u
m

 g
a

p

m
a

x
im

u
m

 g
a

p

m
a

x
im

u
m

 g
a

p

in
itia

l s
ta

te

1 2 3 4 5 6

Figure 5: Sketch of the signal sources’ efficient handling
of request for new values. The blue circles on the top rep-
resent the requests via a call to getValue() incoming in
the sequence of the numbers inside each circle. The red
circles in the middle represent the calls to the callback func-
tion onCompute() which triggers computing a new model
state. The green circles at the bottom represent the entries in
the buffer storing the computed states for later re-use. New
states are computed according to the configured validity pe-
riod and maximum gap time. Request 3 does not require a
computation, since it falls within the validity period of the
previously computed value. Request 6 exceeds the maxi-
mum gap time, which triggers the computation of additional
intermediate states.

the order of around 2ms at a repetition rate of 10Hz, thus
98% of the computations can be saved.
Even a preliminary continuous wave setup of the low-

level RF controls used for the ELBE accelerator [5] uses
this sampling scheme in the interface between firmware and
software, while the control loop is constantly running also
in between the “pseudo pulses”. Since the performance of
the RF control in the virtual test setup is unimportant for the
software tests, the sampling frequency of the control loop
can be strongly reduced in between the pseudo pulses. In
more complex test setups, other model computations may
be required at a totally different rate or potentially even only
triggered by some kind of event.

To achieve the required flexibility for this and similar use
cases, VirtualLab will not sample all components with the
same, constant sampling frequency. Instead, a component
will request a sample from its connected components as
needed. This mechanism is built into the signal sinks and
sources shown in Figure 1. The arrows between the sinks,
sources and calculation blocks represent requests for new
values. Since control loops and models often depend on the

history, each signal source must be able to return a value for
any given time stamp within certain limits.
Each signal source has a smart, internal buffer to effi-

ciently handle the incoming requests with minimal effort.
Figure 5 shows how a signal source handles incoming re-
quests. The signal source has a number of tuning parameters
which allow to reduce the number of samples which need to
be computed. Most important are the validity period, within
which an already computed sample can just be reused, and
the maximum gap time which governs the insertion of addi-
tional intermediate computations needed to keep the model
precision within acceptable limits. The maximum gap time
is especially important for the continuous wave setup, which
makes sure that the model is computed also between the
pseudo pulses with reduced sampling rate.

CONCLUSION AND OUTLOOK
The VirtualLab framework has been used successfully

to develop tests for the low-level RF controller server for
the ELBE accelerator at HZDR. All hardware has been re-
placed by virtual implementations, so the tests can be run
on a standard PC. Its execution is triggered by commits to
the source code management system or completed tests of
dependencies used by the controller server. This presents a
full continuous integration test chain.
By introducing virtual time, the problem of race condi-

tions between the test routine and the tested software has
been eliminated. To achieve an execution speed close to a
real setup with actual hardware, model samples are com-
puted only when needed. This mechanism is implemented
in the signal sinks and sources which connect the different
components of the virtual setup.

To further reduce the CPU load, an interpolation between
the samples will be implemented in future. In additon, more
complex test environments will bemade possible by allowing
to share virtual devices and model components across server
executables and thus testing the interplay of multiple control
servers.

REFERENCES
[1] ChimeraTK, http://github.com/ChimeraTK

[2] C. Schmidt et al., "Real time control of RF fields using a
MicroTCA.4 based LLRF system at FLASH", 19th IEEE Real-
Time Conference, Nara, Japan, 2014.

[3] M. Altarelli et al., "XFEL: The European X-Ray Free-Electron
Laser: Technical Design Report", DESY-2006-097, DESY,
Hamburg, 2007.

[4] PICMG®, "MicroTCA® Enhancements for Rear I/O and Pre-
cision Timing, MicroTCA.4 R1.0", 2011/2012.

[5] M. Kuntzsch et al., "First experience using a MicroTCA.4-
based LLRF-controller driving the SSPA-based high power
RF system at ELBE", Ninth CW and High Average Power RF
Workshop, Grenoble, France, 2016.

WECSPLCO03 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
12Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Control Systems

