

AUTOMATED AVAILABILITY STATISTICS
P. Duval, M. Lomperski, H. Ehrlichmann, DESY, Hamburg, Germany

J. Bobnar, Cosylab, Ljubljana, Slovenia

Abstract

The availability of a particle accelerator or any large
machine with users is not only of paramount importance
but is also, at the end of the day, an oft quoted number (0
to 100%) which represents (or is taken to represent) the
overall health of the facility in question. When a single
number can somehow reflect on the maintenance,
operation, and engineering of the machine, it is important
to know how this number was obtained. In almost all
cases, the officially quoted availability is generated by
hand by a machine coordinator, who peruses the operation
statistics over the period in question. And when humans
are involved in such a calculation there might be a latent
tendency to avoid the stigma of low availability. So, not
only might there be scepticism at 'impossibly high'
availability, but comparing quoted availability from one
machine with another might turn out to be virtually
meaningless.

In this paper we present a method for calculating the
machine availability automatically, based on the known
(and archived) machine states and the known (and
archived) alarm states of the machine. Ideally this is
sufficient for a completely automatic determination of the
availability. This requires, however, a perfect
representation of all possible machine states and a perfect
representation of all possible fatal alarms (those leading
to down time). As achieving perfection is ever an
ongoing affair, the ability for a human to 'post-correct' the
automated statistics is also described.

INTRODUCTION
A particle accelerator facility has an operations

schedule (potentially 24 hours/day 7 days/week) where
the facility is obligated to supply users or experiments
with beam. Any unanticipated deviation from this
operations schedule is regarded as non-availability. Quite
naturally, machine coordinators strive to present a perfect
score of 100 % availability at the weekly operations
meeting. Traditionally a machine coordinator will pore
over machine data, spreadsheets, logbook entries, etc. to
obtain the official availability of the facility over the
period in question.

We are motivated to generate this availability number
automatically for several reasons. First and foremost, we
can remove the human element entirely if the official
availability is generated entirely automatically. Secondly,
we can free up a significant amount of time spent by the
coordinator calculating such a number by hand. Finally,
we can monitor the availability on-line during operations.

REQUIRED SERVICES
The necessary ingredients to device such a system for

automatically calculating machine availability over a
selected time range consist of three central services. There
must be a machine state server which correctly defines all
possible declared states in which a facility can be in at
any time. There must be a central alarm server with a
clear definition of what constitutes a fatal alarm. It
should also be realized that the condition of a fatal alarm
is inextricably bound to the machine state, as we shall see
below. There must also be a central archive server which
keeps a history of the state and fatal-alarm information.

Machine State Server
The possible states of an accelerator facility are defined

by the machine coordinators and the facility will be in
some state at any given time. Theoretically the choice
could be as simple as running or not running, but is
generally more complicated. For completeness, the TINE
[1] state server also recognizes the state unknown if there
is no proper declared state. Otherwise the state of a
machine will be declared to the state server and the
machine will be assumed to be in that state until another
state declaration is made. The set of all possible machine
states is completely configurable.

There exists the question as to what to do about
problems. Either problems is a valid machine state which
is likewise declared or problems is an attribute assigned to
one of the other defined valid machine states. For
instance: “this is a declared user run but we have
problems”. The TINE state server can handle either
option, but we point out that the current configuration
treats problems itself as a valid declared machine state.
This implies that some service must determine that we
cannot be in an operational state and officially declare the
state problems.

Central Alarm Server
The principal ansatz concerning availability is that “if

the machine is not available then there must be at least
one fatal alarm in one of its subsystems.” And if we are
treating problems as a declared state then a corollary to
this ansatz is that “if we are in the problems state then
there must be at least one fatal alarm”.

We perhaps begin to see a number of consistency
checks unfolding before our eyes. If the state is problems
and there are no fatal alarms then this is by definition
wrong and needs to be investigated and fixed.
Furthermore, if there is a fatal alarm then the state must

WEPOPRPO18 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
38Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

User Interface and Tools

be problems. If this is not true, then this is likewise
wrong.

Ensuring that the control system alarms reflect the true
state of the machine is a painstaking procedure and is a
task which generally falls on the machine coordinator to
undertake and complete.

Central Archive Server and Bean Counting
Our goal is to be able to specify any particular time

range and obtain both state and availability information.
This is in itself actually easy to realize. As we are never
interested in a time granularity smaller than a second or
two we need only count the seconds spent in any one state
and archive this number. And in a similar fashion, we
must only count the seconds where an alarm subsystem
has at least one fatal alarm and likewise archive this
number. The difference in the archived values at the end
points specified by the selected time range provides us
with all we need to know. As the archived data represent
nothing more than counts (the cumulative number of
seconds in a state) we often refer to this as bean-counting,
a moniker which effectively represents its inherent
simplicity.

The Operation History Viewer shown below in Figure 1
and available in the TINE Studio suite [2] in fact makes
use of such archived bean counts and allows the user to
select any time range and examine the machine state and
availability history.

Figure 1: Operation History for the PETRA-3 linac
showing data from Oct. 12, 2016.

In addition to the traditional pie-chart display of the

total amount of time spent in each machine state, any
subsystem of the facility which was not 100 % available
over the selected time is noted and presented in a trend
chart where periods of non-availability are easily
recognized. The fatal alarms (the blame) at any given
time are likewise easily viewed.

RESULTS
The simplicity of the above technique is alas muddled

by the sheer complexity of ensuring the validity of the
alarm information. For example, a fatal alarm appearing
in the RF system even though there is a perfectly good

user run will destroy the availability calculation. And of
course the state declaration must correspond with the true
state of the machine. Any such inconsistencies will be
spotted by the machine coordinator calculating the
availability statistics and if they are religiously forwarded
to those persons responsible for generating the alarms or
declaring states, then eventually the availability results
generated automatically by the above techniques will
coincide with those calculated by hand by the machine
coordinator.

Corrections
The trial-and-error period involved in ensuring that the

automatically generated availability statistics are correct
is expected to be long and drawn out. In fact any future
upgrade to the accelerator facility is likely to bring new
use cases and more trial and error with it.

During this trial-and-error process it is more important
than ever to be able to correct the raw statistics displayed
by the Operation History Viewer above. We do not
correct the actual stored state data (i.e. the bean counts).
Instead we provide a corrections database for both the
machine states and the subsystem availability, which is
then optionally applied to the statistics displayed in the
application.

A machine coordinator can use the same application to
correct known false information, for instance if the state
change trigger declaring problems was somehow missed,
etc. A right-click over the states history display (the pie
chart in Figure 1) will offer the option to examine or
apply corrections in the form of a new popup window, as
shown in Figure 2.

Figure 2: The state correction popup window.

Correcting a state to or from problems brings up the

issue of correcting the availability. Since the problems
state automatically implies that the machine was not
available so long as it is in this state, then there is likely to
be incorrect stored alarm information as well. Namely,
we perhaps missed a fatal alarm somewhere (e.g. we
know from the logbook that there was unscheduled
downtime even though the declared state claimed we
were in a user run) or perhaps we recorded a fatal alarm
when there wasn’t one (e.g. we had a happy user run even
though the RF system claimed a fatal alarm). If on the
other hand the stored alarm information is correct then the

Proceedings of PCaPAC2016, Campinas, Brazil WEPOPRPO18

User Interface and Tools
ISBN 978-3-95450-189-2

39 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

declaration of problems was itself somewhere in error. In
fact, a close scrutiny of Figure 1 will reveal that over the
24 hour period that was Oct. 12, 2016 the PETRA3 linac
was in the problems state for 9.8 minutes whereas there
were only 6.8 minutes of non-availability. This is clearly
inconsistent and needs to be both corrected and
investigated.

 Apropos correcting availability, there is a second
correction popup window designed to correct the
availability counts and either assign blame to or remove
blame from some subsystem, and this brings up two
points. Point one is that the operation history application
must itself check the time range of any problems state
(with applied corrections) against that of the overall non-
availability (with applied corrections) and warn the
application user if these are not synchronized. Point two
is that if the machine coordinator sees fit to apply any
correction whatsoever he should inform the responsible
parties that he needed to do so and request that steps be
taken to fix the problem at the source. This latter turns
out to be very important feedback for server programmers
who might otherwise not have the overall picture of
operations statistics in mind.

CONCLUSIONS
The ability to automatically display operation and

availability statistics for a facility over any particular time
interval and/or monitor the same on line is worthwhile
and relatively easy to implement to first order. The devil
as usual is in the details. The technique described here
hinges on the proper identification of fatal alarms
(defined as those leading to or responsible for non-
scheduled downtime) and assigning them to the reason(s)
for the non-availability. The operation history depends as
well on the absolute correct declaration of the proper state
of the facility. If these two points are met then the rest is
simple bean counting and archiving.

We cannot understate how difficult it sometimes is to
ensure that the identification of fatal alarms is in fact
correct. This is often an iterative process spanning
months if not years. Realizing this, we have added the
ability to post-correct the raw data providing the
automated statistics. Thus a machine coordinator can
ensure that the displayed statistics for any time period is
officially correct and at the same time do his part in
iterating the system toward perfection.

We expect this to remain an ongoing project for some
time. To be useful, this system absolutely requires an
engaged machine coordinator who not only knows the
systematics of machine operations but is willing to
identify inconsistencies, both in the state declaration and
in the setting of fatal alarms, and trace them back to their
source. With the ability to post-correct the information
displayed in the TINE Studio Operations History Viewer,
it should not require much extra effort for a machine
coordinator who is already calculating operations and
availability statistics to see this through. To expedite the
iterative improvement necessary a notification system
will be added to the corrections dialog, so that the persons

responsible for alarms and state declarations can be
informed of those inconsistencies which led to a
correction.

If we are persistent in our efforts, then the automated
availability calculation can not only be trusted but can be
monitored on-line, for example at the beginning and end
of a shift. Once the automatic calculation can be trusted,
then we can regard the official availability as an honest
assessment, as we have effectively removed any human
element in the calculation which might subconsciously
exaggerate or minimize downtime (and with the side-
effect that the human involved is free to engage in other
activities).

REFERENCES
[1] TINE website, http://tine.desy.de
[2] P. Duval, M. Lomperski, and J. Bobnar, “TINE Studio,

Making Life Easy for Administrators, Operators and
Developers”, in Proc. ICALEPCS’15, Melbourne, Australia,
Oct. 2015, paper WEPGF133.

WEPOPRPO18 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
40Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

User Interface and Tools

