
HIGH LEVEL APPLICATIONS FOR SIRIUS
I. Stevani∗, N. Milas, X. R. Resende, L. N. P. Vilela

Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil

Abstract
Has been decided that Sirius will use EPICS as its dis-

tributed control system and this year the development of its
high level applications started. Three development frame-
works were chosen for building these applications: CS-
Studio [1], PyQt [2] and Matlab Middle Layer [3] (MML).
Graphical user interfaces (GUI) and machine applications
have already been designed and implemented for a few sys-
tems using CS-Studio and PyQt: slow orbit feedback, life-
time calculation and top-up injection. Specific Sirius data
structures were added to the MML scripts in order to allow
for EPICS communication through LabCA [4].

INTRODUCTION
Sirius is a synchrotron light source facility based on a 4th

generation storage ring that is presently under construction
at LNLS in Campinas, Brazil. The project initiated in 2008
with the first lattice studies and in the beginning of 2015 the
building construction started. Machine commissioning is
expected to start mid 2018 [5]. By this time, indispensable
control systems for beam stability – such as tune measure-
ment, orbit correction, injection – should be ready for use,
and so should their high level applications (HLAs).

To achieve this goal, the accelerator physics group started
developing these applications this year and should intensify
its activity with HLA next year, after most of the group’s
work related to machine components’ specifications – that is
currently taking most of the group efforts – is done. A virtual
accelerator with channel access server (VACA) [6] has been
implemented to emulate the real machine, thus providing a
testbed environment for high level software development.

APPLICATIONS FRAMEWORK
Figure 1 shows a schematic view of the application frame-

work Sirius will use for HLA development. On a lower
level, services are categorized in two groups: IOCs and ma-
chine applications. Both of them are channel access (CA)
servers, the first providing control access to machine hard-
ware while the second providing machine services. Machine
applications developed so far were written in Python using
PCASpy [7]. Virtual IOCs were implemented using EPICS
Database on top of VACA in order to provide simulated
fluctuations for machine parameters. EPICS V4 is another
option for implementing machine applications that will be
studied and discussed next year.
On top of Fig. 1 are the client applications. For basic

process variable monitoring and settings with graphical user
interface capabilities, CS-Studio was chosen due to its sim-
plicity and fast learning curve. Most of the control system
∗ isabella.stevani@lnls.br

interface is expected to be implemented with CS-Studio. For
software that requires elaborate logic, algorithms will either
be implemented in the IOC level with simple driving GUI
clients or using other options, such as PyQt or MML.
The control system can benefit from various support ap-

plications for storing and organizing system’s parameters,
IOC software, device and PV name lists, and so on. The plan
is to use a few of the applications in development under the
DISCS collaboration effort [8, 9]. The device naming and
configuration modules of DISCS are currently being tested
and used in the HLA development framework. Other DISCS
modules, such as its logbook, IOC and machine save/restore
services, will soon be tested as well.

Figure 1: Applications framework schematic.

IMPLEMENTED APPLICATIONS
Some prototypes were built on these platforms listed be-

fore to help the developers familiarize with their functionali-
ties and evaluate if they are suitable for Sirius requirements.
The HLAs are presented next.

Slow Orbit Feedback
The slow orbit feedback (SOFB) system software is an

example of a HLA that has already been written for Sirius.
It consists of two modules: a machine application that reads
BPMs and controls orbit correctors and a user graphical
interface application.
The first one is responsible for all data processing and

control, such as orbit/response matrix measurements and

Proceedings of PCaPAC2016, Campinas, Brazil WEPOPRPO22

User Interface and Tools
ISBN 978-3-95450-189-2

47 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs



orbit corrections based on singular value decomposition
(SVD). Standard useful functionalities were implemented:
device selection, response matrix and reference orbit config-
urations, variable-size buffers with orbit data for averages,
optional inclusion of RF frequency in the correction loop
and corrector strength adjustments. These functionalities
were implemented in Python modules that are imported in
a PCASpy SOFB server. Python threads were used to al-
low for uninterrupted CA service while data processing and
calculations are performed in response to prior user interac-
tions.

As depicted in Fig. 1, the second SOFB module is a user-
friendly GUI application with a CA client layer underneath
that allows for monitoring and controlling the SOFB sys-
tem with embedded graphics tools, thus facilitating machine
commissioning and operation. This module was designed
in CS-Studio and it interacts with the SOFB machine appli-
cation module through a set of PVs.
The prototype application is shown in Fig. 2. Its design

was based on the orbit correction interface that is being used
in the existing UVX storage ring at LNLS which has a pro-
prietary control system. The main features of the prototype
application are plot displayed with measured orbit, widgets
set for manual correction, the machine application mode
selection and widgets for configuring sampling parameters
for orbit average calculations. Although not all functional-
ities have been implemented on the client application yet,
the current version should suffice for initial commissioning
stages of the storage ring. Selection of BPMs and correc-
tors for the correction algorithm, as well as response matrix
and reference orbit configurations, will be added in the near
future.

Figure 2: Orbit correction display application in the CS-
Studio environment.

Lifetime Calculation
Another example of implemented HLA is the lifetime

calculation. Just as in the case of the SOFB system, here two
separate application modules were created. In order to sim-
plify the user interface, the algorithm that computes beam

lifetime was moved to a machine application implemented in
EPICS DB, while the client application was designed in CS-
Studio. The calculation method in the machine application
is the same as the one already in use in the UVX storage ring
and that has been proven reliable and stable over the years.
The details of its implementation can be found here [10].

As always with beam lifetime calculations, there is a trade-
off between precision and quick response to lifetime varia-
tions. This trade-off is realized by means of two input pa-
rameters, precision and sampling time, that define the time
window and number of points for the lifetime calculation. In
the user interface it is possible to display the lifetime in units
of hours, minutes or seconds, as shown in Fig. 3. Being able
to display lifetime in minutes or seconds might be useful
specially on the early days of machine commissioning.

Figure 3: Lifetime display application in the CS-Studio
environment.

Top-up Injection
After the commissioning phase, the Sirius injection sys-

tem will operate in top-up mode and a control application
will be necessary to conduct the required periodic injections.
A simplified version of this HLA was developed to test the
simulation of the injection process in VACA. It consists of a
PyQt application that monitors the beam current in the stor-
age ring and starts the injection cycle in order to mantain the
current level within the desired tolerance. The connection
between the CA protocol and the Python language was done
with the PyEpics package [11]. The user interface contains
a display of the beam current over time and the fill pattern
in the storage ring, as shown in Fig. 4.
In order to include this application in the Sirius control

system, several functionalities must be added. For example,
in this version, it is only possible to choose between multi-
bunch or single-bunch injection mode. However, as the
timing system will support the injection to any bucket, the
final version of this HLA should allow the specification of
any filling pattern.

WEPOPRPO22 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
48Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

User Interface and Tools



Figure 4: Top-up injection display application developed
with the PyQt framework.

CONCLUSION
The development of Sirius’ HLAs started this year. Three

development frameworks were chosen and then tested on
three important machine systems: SOFB, lifetime calcula-
tion and top-up injection. Results were promising and the
plan is to continue improving these systems – adding missing
functionalities, for example – and start the development of
new HLAs such as LINAC gun and timing system controls,
which are also fundamental to machine commissioning.

Also, has been decided that the control system could bene-
fit from applications in development under the DISCS collab-
oration effort. Its device naming and configuration modules
are currently being tested and used in the HLA development
framework. Other DISCS modules will soon be tested as
well.

ACKNOWLEGMENTS
The authors would like to thank L. M. Russo from the

Diagnostics group for fruitful discussions on EPICS and for
his help in configuring all services modules from DISCS
which we have been testing.

REFERENCES
[1] Control System Studio, http://controlsystemstudio.

org/

[2] PyQt, https://wiki.python.org/moin/PyQt

[3] G. Portmann, J. Corbett and A. Terebilo, "An accelerator
control middle layer using MATLAB", in Proc. PAC’05,
Knoxville, United States, May 2005, paper FPAT077, pp.
4009-4011.

[4] T. Straumann, "labCA – An EPICS Channel Ac-
cess Interface for scilab and matlab", May 2008,
https://www.slac.stanford.edu/grp/ssrl/spear/
epics/extensions/labca/manual/

[5] A. R. D. Rodrigues et al., “Sirius status report”, in Proc.
IPAC’16, Busan, Korea, May 2016, paper WEPOW001, pp.
2811-2814.

[6] X. R. Resende, A. H. C. Mukai, L. N. P. Vilela and I. Stevani,
“Development of a virtual accelerator for Sirius”, presented
at the PCaPAC’16, Campinas, Brazil, Oct. 2016, paper WE-
POPRPO21, this conference.

[7] PCASpy Documentation, http://pcaspy.readthedocs.
io/en/latest/

[8] V. Vuppala et al., "Distributed Information Services for Con-
trol Systems", in Proc. ICALEPCS’2013, San Francisco,
United States, March 2014, paper WECOBA02, pp. 1000-
1003

[9] DISCS, http://openepics.sourceforge.net/
about-discs/

[10] A. J. Burns et. al, "Real time monitoring of LEP beam cur-
rents and lifetimes", in Proc. EPAC’94, London, England, pp.
1716-1718.

[11] PyEpics, http://cars9.uchicago.edu/software/
python/pyepics3/

Proceedings of PCaPAC2016, Campinas, Brazil WEPOPRPO22

User Interface and Tools
ISBN 978-3-95450-189-2

49 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs


