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Abstract

The evolution of synchrotron and betatron emittances of
an electron beam under action of laser irradiation and con-
sequent emission of hard quanta is analyzed. Dependencies
of the cooling rate on structure functions at the irradiation
point as well as on the parameters of the electron and laser
beams are calculated and optimized. The invariance of the
sum of the decrements is proved.

The work is fulfilled within the frames of NATO grant
SfP-977982.

INTRODUCTION

The possibility of generation of monochromatic X-ray
radiation by backward scattering of laser light at a rela-
tivistic electron beam attracts now special attention [1, 2].
The frequency transformation easily follows from simple
kinematic relations and has an order of magnitude of4γ2,
whereγ is Lorentz factor. Besides, the scattered X-rays
are well directed (angle∼ 1/γ)what is typical for radiation
from high energy electrons. A weak point of the method is
a rather small cross-section which imposes serious require-
ments upon the laser power and the beam density.

It is rather obvious that electron beams circulating in a
storage ring are preferable from this point of view if their
life-time is large enough. The latter depends on many fac-
tors including transverse spreading of the beam inherent in
the method and caused by the recoil of emitted hard quanta.
This effect is well known for cyclic accelerators in connec-
tion with quantum fluctuations of synchrotron radiation.
However, in our case a quantum is essentially harder and
requirements to the beam transverse size are more stressed.

Similarly, one could count on radiation cooling also in-
herent in the scattering process. Really, a radiation quan-
tum should be re-emitted practically along the instanta-
neous velocity of a relativistic electron which gets both
longitudinal and transverse recoil momentum. The first is
restored by the RF compensating system while the second
produces radiation ”friction” exactly in the same way as in
synchrotrons. Although one can not expect really strong
damping for existing parameters the effect has to be con-
sidered because the spectral and angular distribution of the
scattered light differs from that in synchrotrons and de-
pends on parameters of the laser beam.

LASER COOLING

We neglect below intrinsic damping due to synchrotron
radiation and consider electrons performing independent
synchrotron and betatron oscillations:
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Hereu is a relative energy deviation from the equilibrium
value,β andψ are periodic structure functions of the mag-
netic system, R is the mean radius of the equilibrium orbit,
primes denote derivatives with respect to the equilibrium
orbit arc s, q is an RF field harmonic number,α = ψ,
Ω is a synchrotron oscillations frequency in rotational fre-
quency units. The valuesε andε have the meaning of area
enclosed by phase trajectory ellipsis in phase planes(x, x′)
and(u, u′) correspondingly being integrals of motion. For
bounding phase trajectories they are identified as transverse
and longitudinal emittances. Being expressed via phase
plane coordinates they are equal to
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Meeting a laser photon at the light and electron beams
crossing point the electron energy is instantaneously
changed by the value∆u keeping the coordinatesy andu′

and the instantaneous velocityy′ constant (see Fig.1).The
latter means that the scattered photon is emitted perfectly
along the electron trajectory. With the same precision one
can neglect the energy change when a relatively soft laser
photon is absorbed. As a result, the integralsε andε expe-
rience instantaneous changes:
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Here and below the structure functions and their derivatives
are taken at the crossing point. A destination of the second
order changes will be considered later.
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Figure 1:

To find the average variation ratedε/ds and dε/ds the
expressions above are to be multiplied by the scattering
probability P (∆u, y, y′, u, u′) and averaged over all be-
tatron and synchrotron phases. To do this we present the
probability as an expansion

P (∆u, y, y′, u, u′) = (9)

= P0 +
∂P

∂y
y +
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∂y′
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∂u′
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The first term here is the probability of ”ideal” collision
with the equilibrium electron, the second and the third ones
describe coordinate and angular discrepancies between the
electron and light beam axis. The last term correspond to a
possible influence of lack of synchronization between elec-
tron and light pulses.

Note that after averaging over phases denoted below by
the angular brackets all terms of the first order with respect
to y, y′, u, u′ vanish. Besides, it follows from (1) that:
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Besides re-emission process the transverse emittance is
influenced by the RF field necessary for radiation losses
compensation. We shall suppose it being concentrated
within a narrow accelerating gap normal to the equilibrium

orbit. A particle gets there an instantaneous increase in en-
ergy, keepingy andu′ constant. There is a simultaneous
change ofy′ because the accelerating field does not change
the transverse momentumpmathrmy. For this reason the
change of the emittance has to be calculated under condi-
tion py = const, or1.

∆y′ = ∆
py

p
= −py

p
u = −y′u, (12)

as far as in the ultrarelativistic case the relative changes
of energy and of total momentum are equal to each other.
Moreover, the probability of the gain is now identically
equal to unity because the energy income does not depend
on the possible scattering at previous turns.

It easy to see that after averaging over phases the condi-
tion (12) gives an additional change of the emittance

∆ε = −εu ; ∆ε = 0 (13)

which does not depend on structure functions at the point
of compensation.

Noting that−P∆u and∆u are equal to the relative en-
ergyW emitted per one turn we get the increments of be-
tatron and synchrotron oscillations damping :
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They have much common with the usual radiation damp-
ing decrements but contain the local values of the structure
functions. In particular the theorem about the decrements
sum [3] looks as

Γb + Γs =
∂W

∂u
+ W . (16)

It says that the coordinate and angular discrepancies of
laser and electron beams do non influence the total phase
volume and yield a decrement re-distribution only. By the
way, the term proportional to the coordinate shift between
the beams vanishes unless the beams have a zero crossing
angle.

Bearing in mind that the intensity of radiation of a rel-
ativistic particle is proportional to the square of its energy
the relation (16) can be rewritten as

Γb + Γs = 3W . (17)

The laser cooling as opposed to synchrotron radiation
one depends on the laser power and thus on the final output
of hard quanta. Even in certain ambitious projects [2] the
damping time can not be less than a second. This hardly
might provide a serious limitation of the emittance growth
due to quantum fluctuations discussed below.

1We do not consider here the influence of the magnetic component of
the RF field which creates no additional damping [3]
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EXCITATION BY RECOIL MOMENTUM
FLUCTUATIONS

A quantum nature of radiation is described by the next
terms of expansion ofε andε over powers of∆u. A single
emission act gives

∆2ε = πR2 (∆u)2
[
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)′2]
; (18)

∆2ε = πR
qα

Ω
(∆u)2 . (19)

In the limit of h̄ → 0 the value

〈(∆u)2 P0〉 = EqW

whereEq is a relative energy of the emitted quantum de-
fined as

Eq = 〈(∆u)2 P0〉/〈∆uP0〉.
So, in average, the scattering process results in the emit-
tances increase rate:
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ds
= πR

qα

Ω
EqW .

This rate has to be compared with damping due to laser
cooling. Note that both are proportional to the laser power
so that the final steady-state emittance has an universal
value of order of

εst ≈ 1
Γb

dε

ds
≈ πR2Eq

[
ψ2

β
+ β2

(
ψ

β1/2

)′2]
.

This value determines, of course, whether the stored elec-
trons can be exploited for a long time or they would be
burning down and require continual reinforcement.

SCATTERING CROSS SECTION AND
PHOTON ENERGY

To use the relations obtained above one has to know the
the cross section of the process as a function of the inci-
dent photon angle. The differential cross section for a solid
angle do is [4]:

dσ
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= 2r2
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1

× (21)

×
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− 4
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where

κ1 = −2 (∆u)i γ (1− β cos θi) ; (22)

κ2 = 2 (∆u) γ (1− β cos θ) . (23)

Index i here and below marks values related to an incident
photon,θ is an angle between the direction of the photon
and the particle velocity. The energies of an incident and
scattered photons are related by:–

(∆u) = (∆u)i
1− β cos θi

1− β cos θ + (∆u)i (1− cosµ)
(24)

whereµ is an angle between their directions:

cos µ = sin θ sin θi cos ν − cos θ cos θi (25)

andν is a polar angle in do.
For small anglesθ the value1− β cos θ reaches its min-

imum of the order of1/2γ2 then increases sharply starting
from angles≈ γ−1. So, for all angles of interest

1− β cos θ À (∆u)i

if the particle energyγ ¿ mc2/h̄ωi. This condition means
neglect of quantum Compton effect and is well fulfilled for
all parameters of interest.

Following the standard procedure we get after some
arithmetic in the relativistic limit, i.e. forcos θi differing
markedly (> γ−2) from unity:

W

Wi
=

8π

3
r2
0

BS
γ2 (1− cos θi) (26)

whereS is the average cross section of the interaction re-
gion, B > 1 is a bunching factor andr0 is the electron
classical radius.

To complete the picture note that in the same limit the
averaged frequency multiplication factor is:

〈
ω

ωi

〉
=

7
5
γ2 (1− cos θi) . (27)

It is lesser than the ideal value4γ2 even for head-to-head
collisions because of averaging over emission angles. Note
that the relations (26) and (27) are not valid for collinear
beams.

ON OPTIMIZATION OF THE
STRUCTURE FUNCTIONS

It is easy to see that to make the emittance growth smaller2

the value of

U =
ψ2

β
+ β2

(
ψ

β1/2

)′2
(28)

2Sometimes this is a square of transverse deviation what should be
minimized
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should be as small as possible while the mutual geometry of
the electron and light beams can influence the decrements
redistribution only (here and belowβ is again a structure
function).

Note that the structure functionsψ andβ are not inde-
pendent as far asψ(s) is a periodic solution of

ψ′′ + g(s)ψ =
K(s)

R
, (29)

while the amplitude functionβ satisfies the nonlinear equa-
tion (

β1/2
)′′

+ g(s)β1/2 = β−3/2. (30)

with the same focussing functiong(s). HereK(s) is the
equilibrium orbit curvature.

Multiplying (29) byβ1/2 and ( 30) byψ gives the general
equation relating the structure functions

β
d
ds

β
d

ds

(
ψ
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)
+

(
ψ
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)
=

K

R
β3/2. (31)

Using this relation and differentiatingU with respect tos
to find an extremum we have:

U ′ =

[
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β
+ β2
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= 2
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β1/2

)′
.

(32)
Thus, U reaches its extremal values at the same points
whereψ/β1/2 does while

Uext =
(

ψ2

β

)

ext

. (33)

Within a straight sectionU is a non-zero constant which
can be expressed in terms of the positiveβ function. Really,
consideringφ =

∫
ds/β as an independent variable in (32)

we obtain
[

d2

dφ2
+ 1

](
ψ

β1/2

)
=

K

R
β3/2 (34)

with the periodicity conditions in the interval0 < φ < 2πν

whereν = (2π)−1 ∫ 2πR

0
d/β is the betatron oscillation fre-

quency. The solution is straightforward:

ψ
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+
1

2 sin πν

∫ 2πν

0

K

R
β3/2 sin (πν + φ− φ′) dφ′.

At a point of an extremum where
(
ψ/β3/2

)′
= 0 the func-

tion U reaches the value

Uext =
1

4 sin2 πν

[(∫ 2πν

0

K

R
β3/2 cos φ′dφ′

)2

+
(∫ 2πν

0

K

R
β3/2 sin φ′dφ′

)2
]

. (36)

So, one can say that the excitation of oscillations always
takes place. To minimize it a defocusing (?) lense could
be helpful at the crossing point as well as negative curva-
ture portions of the equilibrium orbit with large values ofβ
function.
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