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Abstract

We present a thorough analysis and a full solution in the
frequency domain, for the wake-fields of a (bunched)beam
in a pipe with walls of finite conductivity and thickness,
for the simplest pipe-geometry (circular). The wake-field
multipoles for a multi-bunch beam in a circular ring are
computed in analytic form, displaying the wake-field de-
pendence on wall conductivity and thickness.

INTRODUCTION

Wake fields describe the interaction between a particle
beam and the surrounding pipe wall. For perfectly con-
ducting pipes and ultrarelativistic motion (v = ¢) wake-
fields are negligibile. In the realistic case of walls of fi-
nite conductivity, and/or relatively low values of the rela-
tivistic factor -, occurring, e.g., a injection, wake fields
might be quite relevant. In addition, for low revolution fre-
guencies, the finite thickness of the pipe wall should be
properly taken into account [1]. Much has been written
on the subject of wake fields, since the early work of Pi-
winski [2], who first studied the opposite limiting cases of
a metal-coated ceramic vacuum chamber, where the coat-
ing is much thinner than the EM penetration depth, and
of a homogeneous conducting pipe, much thicker than the
EM penetration depth. Palumbo and Vaccaro extended Pi-
winsky’s results for this latter case, by computing higher
order wake-field multipoles [3]. Chao first gave a for-
mula which fully exploits the dependence of the wake-
field on the pipe wall thickness, but his analysis was re-
stricted to the monopole term [4]. More recently, Ohmi
and Zimmerman presented a thorough analysis of the sub-
relativistic effect [5]. Finaly, Yokoya and Shobuda stud-
ied the finite-conductivity, finite-thickness pipe-wall prob-
lem, in the frame of a transmission line analogy, which
can be applied to beam pipes with general transverse ge-
ometry and multi-layered walls, in the limit where the EM
skin depth is much smaller than the (smallest) pipe trans-
verse dimension [6]. In [7] we computed the fields of a
(bunched) beam in a pipe with walls of finite conductiv-
ity and thickness, for the simplest pipe-geometry (circular).
We solved the problem by computing the Fourier transform
of the wake potential Green’s function produced by a point
particle running at constant velocity SGci., at a distance r,
off axis of a circular cylindrical pipe with radius b, wall
conductivity o and thickness A.

The solution found is exact but complicated, so that in
most cases of practical interest one has to resort to suit-

able limiting forms. In this paper we introduce a number
of asymptotic approximations appropriate, in particular, to
LHC (Large Hadron Collider) and DAFNE, whose relavant
figures are collected in Table .

THE GREEN’SFUNCTION

In [7] we obtained the Green’s function for an off-axis
point particle running at distance r from the axis of acir-
cular pipe of radius b with finite conductivity o and thick-
ness A, viz.
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It can be checked that Eq.(1) reduces to the solution ob-
tained in [3] inthelimit d — oo of aninfinitely thick wall.

ASYMPTOTIC APPROXIMATIONS

In most cases of practical interest, one may resort to
suitable (asymptotic) limiting forms, since many problem-
specific (dimensionless) parameters are either very large or
very small.
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Large Parameters

The following inequality always holdsin view of the as-
sumed beam spectral features:
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where
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is the electromagnetic skin depth. One has also |kd| > 1,
sinced < b. Note also that, within the useful spectral
ranges discussed above, one has from Eq. (6):
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Accordingly, using the well known large-argument
forms of the (modified) Bessel functions:
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for I,,,(-) and K, (-) with arguments kb and kd in Eq. (1),
one getsasimpler form for both N (k) and D(k), viz.:
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Small Parameters
L et us next discuss the asymptotic limit:
|k|b/y ~ |kld/y < 1. (13)

For reasons which will be clarified soon, it is convenient
to discuss separately the monopole (m = 0) and multipole
(m > 1) terms.

- The Monopole Term (m = 0) . In the limit Eq. (13),
one uses the zero-th order modified Bessel functions ap-
proximation valid for small arguments [8]:

Io(¢) ~ 1, Ko(C) = —log(C),

and hence the monopole term in Eq.
(12),(12) can be written
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For avery thick pipewall, |[EA| ~ |A/6wan| > 1, whence
| coth (A/dwan)| ~ 1, and Eq. (15) becomes:
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which, in the further limit (appropriate, e.g., both for LHC
and DAFNE):
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yields the known result [3]:
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For afinite-thicknesspipewall, | A/ |> 1, inthesame
limit Eq. (17), Eq. (15) yields:
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This latter, in the limit of infinite wall thickness,

|A/dwan| — o0, gives back Eq. (18). The relative error
produced by using Eq. (19) in place of Eq. (1) isshownin
Fig.1 asafunction of kb.
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Figure 1: Relative error I" on (27¢q/q)[Gn — GS°] Versus
kb after assuming kb < 1 and using Eq.s (19), (24) in
place of Eq. (1); monopole, dipole and quadrupole terms

(m=0,1,2).

- Multipole Terms (m > 1). In the asymptotic limit
|klb/y < 1, |k|d/v < 1 oneusesin Eq.s (2), (1), (11)
and (12) the small-argument asymptotic form of the modi-
fied Bessel functions of m-order [8]:
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Hence, from (2):
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and, from Eq.s (1),(11) and (12):
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which, using Eq.s (8), (9) can be equally written:
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The relative error produced by using Eq. (24) in place of
Eg. (1) for m=1,2 isshown in Figure 1.

As expected, the error increases with kb, but remains
very small throughout the meaningful spectral range. Sim-
ilar to the monopole term case, for a very thick pipe wall
, one has |kA| ~ |A/8uau| > 1, and hence sinh kA ~
cosh kA. Thus Eq. (24) becomes:
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The finite-thickness pipewall , |A/d,,q11] > 1 case, will be
now discussed with reference to a number of limiting cases
relevant to our applications.

1+

wall

-LHC. IntheLarge Hadron Collider one has:
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Equation (28) reproduces the limit form of Eq. (26) under
Eq. (27) provided A > |0yqu|. In the extreme limiting
case |A/dwai| < 1 the expression in square brackets in
Eq. (24) becomes simply (1 + b/d)~*, so that using (21),
one has:
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which reducesto the free-spaceterm, if A — 0,i.e. d — b,
as expected.

- Ultrashort Bunch Machines . In ultrashort bunch ma-
chines, including, e.g., DAFNE, one has (Table):
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In the extreme limiting case |A/dwair| < 1 the expression
in square bracketsin Eq. (25) becomessimply (1+b/d) "1,
so that using (21), one has:
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which reducesto the free-spaceterm, if A — 0,i.e. d — b,
as expected.

Design parameters LHC DAFNE

Circumference L. [m] 26658 97.69

# of bunches NV, 2835 120

Bunch length o [cm] (7+13) 2

Lorentz factor v 500--7000 1000

Pipe diameter [cm] 3 10

Wall thickness [mm] 0.05(Cu), 1(SS) | 2(Al)

Wall conductivity [Q~*m 1] | (107 + 10'°) 3.4-107

Circulation frequency [MHz] | 11.2455- 1073 368.26
Tablel

CONCLUSIONS

In this paper the general exact Green's function for an
(off-axis) multi-bunch beam in a circular pipe with finite
wall conductivity and thickness was applied, using appro-
priate asymptotic limiting forms, to compute the wake field
multipoles for the different paradigm cases of LHC and
DAFNE. More or lesstrivia extensions include more com-
plicated geometries (e.g., elliptical, square).
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