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Abstract

We present a thorough analysis and a full solution in the
frequency domain, for the wake-fields of a (bunched)beam
in a pipe with walls of finite conductivity and thickness,
for the simplest pipe-geometry (circular). The wake-field
multipoles for a multi-bunch beam in a circular ring are
computed in analytic form, displaying the wake-field de-
pendence on wall conductivity and thickness.

INTRODUCTION

Wake fields describe the interaction between a particle
beam and the surrounding pipe wall. For perfectly con-
ducting pipes and ultrarelativistic motion (v = c) wake-
fields are negligibile. In the realistic case of walls of fi-
nite conductivity, and/or relatively low values of the rela-
tivistic factor γ, occurring, e.g., at injection, wake fields
might be quite relevant. In addition, for low revolution fre-
quencies, the finite thickness of the pipe wall should be
properly taken into account [1]. Much has been written
on the subject of wake fields, since the early work of Pi-
winski [2], who first studied the opposite limiting cases of
a metal-coated ceramic vacuum chamber, where the coat-
ing is much thinner than the EM penetration depth, and
of a homogeneous conducting pipe, much thicker than the
EM penetration depth. Palumbo and Vaccaro extended Pi-
winsky’s results for this latter case, by computing higher
order wake-field multipoles [3]. Chao first gave a for-
mula which fully exploits the dependence of the wake-
field on the pipe wall thickness, but his analysis was re-
stricted to the monopole term [4]. More recently, Ohmi
and Zimmerman presented a thorough analysis of the sub-
relativistic effect [5]. Finally, Yokoya and Shobuda stud-
ied the finite-conductivity, finite-thickness pipe-wall prob-
lem, in the frame of a transmission line analogy, which
can be applied to beam pipes with general transverse ge-
ometry and multi-layered walls, in the limit where the EM
skin depth is much smaller than the (smallest) pipe trans-
verse dimension [6]. In [7] we computed the fields of a
(bunched) beam in a pipe with walls of finite conductiv-
ity and thickness, for the simplest pipe-geometry (circular).
We solved the problem by computing the Fourier transform
of the wake potential Green’s function produced by a point
particle running at constant velocity βcûz , at a distance ro

off axis of a circular cylindrical pipe with radius b, wall
conductivity σ and thickness ∆.

The solution found is exact but complicated, so that in
most cases of practical interest one has to resort to suit-

able limiting forms. In this paper we introduce a number
of asymptotic approximations appropriate, in particular, to
LHC (Large Hadron Collider) and DAFNE, whose relavant
figures are collected in Table I.

THE GREEN’S FUNCTION

In [7] we obtained the Green’s function for an off-axis
point particle running at distance r0 from the axis of a cir-
cular pipe of radius b with finite conductivity σ and thick-
ness ∆, viz.:

G̃m(k, r, r0) =G̃∞
m (k, r, r0)+

qo

2πεo

Im(k′r0)Im(k′r)
bk′Im(k′b)

N(k)
D(k)

,

(1)
where

G̃∞
m (k,r,r0)=

qo

2πεo

{
A(k, r, r0)− Im(k′r0)

Im(k′b)
Km(k′b)Im(k′r)

}
.

(2)
In Eq. (2) k′ = k/γ, G̃∞

m is the solution of the wave equa-
tion corresponding to the perfectly conducting pipe, A(·),
N(k) and D(k) are:
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with k′ = k/γ, d = b + ∆ and

η =
Zoσ

ikβ
− 1. (6)

It can be checked that Eq.(1) reduces to the solution ob-
tained in [3] in the limit d → ∞ of an infinitely thick wall.

ASYMPTOTIC APPROXIMATIONS

In most cases of practical interest, one may resort to
suitable (asymptotic) limiting forms, since many problem-
specific (dimensionless) parameters are either very large or
very small.
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The following inequality always holds in view of the as-
sumed beam spectral features:

∣∣k̄b
∣∣=∣∣∣√k′2 − iσβkZo

∣∣∣ b∼
∣∣∣√−iσβkZo b

∣∣∣≡∣∣∣∣ b

δwall

∣∣∣∣ � 1,

(7)
where

δwall = (−iσβkZo)
−1/2 (8)

is the electromagnetic skin depth. One has also |k̄d| � 1,

since d
>∼ b. Note also that, within the useful spectral

ranges discussed above, one has from Eq. (6):

η � −i
Zoσ

kβ
. (9)

Accordingly, using the well known large-argument
forms of the (modified) Bessel functions:

Im(z) ∼ ez

√
2π z

, Km(z) ∼
√

π

2z
e−z, (10)

for Im(·) and Km(·) with arguments k̄b and k̄d in Eq. (1),
one gets a simpler form for both N(k) and D(k), viz.:

N(k)=−k̄2K ′
m(k′d) sinh k̄∆+ηk′k̄Km(k′d) coshk̄∆,

(11)
D(k)=sinhk̄∆

[
k′2η2Im(k′b)Km(k′d)−k̄2I ′m(k′b)K ′

m(k′d)
]

+ηk′k̄ coshk̄∆ [I ′m(k′b)Km(k′d)−Im(k′b)K ′
m(k′d)] .

(12)

Small Parameters

Let us next discuss the asymptotic limit:

|k|b/γ ∼ |k|d/γ 	 1. (13)

For reasons which will be clarified soon, it is convenient
to discuss separately the monopole (m = 0) and multipole
(m ≥ 1) terms.

- The Monopole Term (m = 0) . In the limit Eq. (13),
one uses the zero-th order modified Bessel functions ap-
proximation valid for small arguments [8]:

I0(ζ) ∼ 1, K0(ζ) = −log(ζ), (14)

and hence the monopole term in Eq. (1) using Eq.s
(11),(12) can be written

G̃0(k, r, r0) = G̃∞
0 (k, r, r0)+

qo

2πεo

γ2

bk2

[
b

2
+ η δwall coth (∆/δwall)

]−1

. (15)

For a very thick pipe wall, |k̄∆| ∼ |∆/δwall| � 1, whence
| coth (∆/δwall)| ∼ 1, and Eq. (15) becomes:

G̃0(k,r, r0)=G̃∞
0 (k, r, r0)+

qo

2πεob

γ2

k2

(
b

2
+ηδwall

)−1

(16)

which, in the further limit (appropriate, e.g., both for LHC
and DAFNE): ∣∣∣∣2η

δwall

b

∣∣∣∣ � 1, (17)

yields the known result [3]:

G̃0(k,r, r0)=G̃∞
0 (k, r, r0)+

qoβγ2

2πεob
(1 + i)

√
β

2σZok
. (18)

For a finite-thickness pipe wall, | ∆/δwall |≥ 1, in the same
limit Eq. (17), Eq. (15) yields:

G̃0(k,r, r0)=G̃∞
0 (k, r, r0)+

qoβγ2

2πεob
(1 + i)

√
β

2σZok
tanh (∆/δwall). (19)

This latter, in the limit of infinite wall thickness,
|∆/δwall| → ∞, gives back Eq. (18). The relative error
produced by using Eq. (19) in place of Eq. (1) is shown in
Fig.1 as a function of kb.
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Figure 1: Relative error Γ on (2πε0/q)[G̃m − G̃∞
m ] versus

kb after assuming kb 	 1 and using Eq.s (19), (24) in
place of Eq. (1); monopole, dipole and quadrupole terms
(m=0,1,2).

- Multipole Terms (m ≥ 1). In the asymptotic limit
|k|b/γ 	 1, |k|d/γ 	 1 one uses in Eq.s (2), (1), (11)
and (12) the small-argument asymptotic form of the modi-
fied Bessel functions of m-order [8]:

Im(ζ) ∼
(

ζ

2

)m 1
m!

,

Km(ζ) ∼ (m − 1)!
2

(
ζ

2

)−m

, (m > 0). (20)

Hence, from (2):

G̃∞
m (r, r0) ≈ G̃free space

m (r, r0) − qo

2πεo

1
2m

(rro

b2

)m

,

(21)

Large Parameters
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where

G̃free space
m (r, r0) ≈ qo

2πεo

1
2m

(rro

b2

)m

R(r, ro), (22)

R(r, ro) =
{

(r0/r)m

(r/r0)m ,
r0 ≤ r ≤ b,
r ≤ ro,

(23)

and, from Eq.s (1),(11) and (12):

G̃m(k, r, r0) = G̃∞
m (k, r, r0) +

qo

2πεo

1
m

(rro
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)m

·

·


1 +

k2ηb
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+ coth (k̄∆)
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mk̄γ2
+ tanh (k̄∆)



−1

. (24)

which, using Eq.s (8), (9) can be equally written:

G̃m(k, r, r0) = G̃∞
m (k, r, r0) +

qo

2πεo

1
m

(rro

b2

)m

· (25)

·
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∆
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(
∆
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)
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∆
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.

The relative error produced by using Eq. (24) in place of
Eq. (1) for m=1,2 is shown in Figure 1.

As expected, the error increases with kb, but remains
very small throughout the meaningful spectral range. Sim-
ilar to the monopole term case, for a very thick pipe wall
, one has |k̄∆| ∼ |∆/δwall| � 1, and hence sinh k̄∆ ∼
cosh k̄∆. Thus Eq. (24) becomes:

G̃0(k,r, r0)=G̃∞
0 (k, r, r0)+

qo

2πεom

(rro

b2

)m
(
1+

b/δwall

mβ2γ2

)−1

.

(26)
The finite-thickness pipe wall , |∆/δwall| ≥ 1 case, will be
now discussed with reference to a number of limiting cases
relevant to our applications.

- LHC . In the Large Hadron Collider one has:∣∣∣∣b/δwall

β2γ2

∣∣∣∣ 	 1,

∣∣∣∣d/δwall

β2γ2

∣∣∣∣ 	 1. (27)

Accordingly, for not-too-small values of |∆/δwall|,
G̃m(k, r, ro) = G̃∞

m (k, r, ro) +

qo

2πεo

1
m

(rro

b2

)m
[
1 − b/δwall

mβ2γ2
coth

(
∆

δwall

)]
. (28)

Equation (28) reproduces the limit form of Eq. (26) under
Eq. (27) provided ∆ � |δwall|. In the extreme limiting
case |∆/δwall| 	 1 the expression in square brackets in
Eq. (24) becomes simply (1 + b/d)−1, so that using (21),
one has:

G̃m(r, r0) ≈ G̃free space
m (r, r0)−

qo

2πεo

1
2m

(rro

b2

)m
[
1 − 2

(
1 +

b

d

)−1
]

(29)

which reduces to the free-space term, if ∆ → 0, i.e. d → b,
as expected.

- Ultrashort Bunch Machines . In ultrashort bunch ma-
chines, including, e.g., DAFNE, one has (Table I):∣∣∣∣b/δwall

mβ2γ2

∣∣∣∣ � 1. (30)

Accordingly, for not-too-small values of |∆/δwall|,
G̃m(k, r, r0) = G̃∞

m (k, r, r0)+

qo

2πεo

(rro

b2

)m

β2γ2 δwall

b
coth (∆/δwall). (31)

In the extreme limiting case |∆/δwall| 	 1 the expression
in square brackets in Eq. (25) becomes simply (1+b/d)−1,
so that using (21), one has:

G̃m(r, r0) ≈ G̃free space
m (r, r0)−

qo

2πεo

1
2m

(rro

b2

)m
[
1 − 2

(
1 +

b

d

)−1
]

(32)

which reduces to the free-space term, if ∆ → 0, i.e. d → b,
as expected.

Design parameters LHC DAFNE
Circumference Lc [m] 26658 97.69
# of bunches Nb 2835 120
Bunch length σs [cm] (7 ÷ 13) 2
Lorentz factor γ 500÷7000 1000
Pipe diameter [cm] 3 10
Wall thickness [mm] 0.05 (Cu) , 1 (SS) 2 (Al)
Wall conductivity [Ω−1m−1] (107 ÷ 1010) 3.4 · 107

Circulation frequency [MHz] 11.2455 · 10−3 368.26

Table I

CONCLUSIONS

In this paper the general exact Green’s function for an
(off-axis) multi-bunch beam in a circular pipe with finite
wall conductivity and thickness was applied, using appro-
priate asymptotic limiting forms, to compute the wake field
multipoles for the different paradigm cases of LHC and
DAFNE. More or less trivial extensions include more com-
plicated geometries (e.g., elliptical, square).
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