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Abstract

Matching process of intense proton bunches using the
so-called gamma-transition jump method is considered.
Longitudinal self-field of bunches is generalized to a case
of the non-uniform vacuum chamber. Formulae allowing to
calculate sign and value of reactive part of the longitudinal
coupling impedance proceeding from the optimal position
of the current pulse forming the transition jump with re-
spect to a magnetic cycle of an accelerator are obtained.
Based on the analysis of experimental data, sign and value
of the reactive part of the longitudinal coupling impedance
of the IHEP U-70 PS are estimated.

INTRODUCTION

The most effective way to avoid longitudinal matching
of intense proton bunches at transition is to increase speed
of crossing the dangerous area by beam. This way of longi-
tudinal matching of proton bunches referred to as gamma-
transition jump method, has been put forward in [1]; it
allows, at use thin quadrupole lenses to perturb disper-
sion function, to shift transition gamma significantly while
keeping betatron frequencies constant. First, this method
was realized in CERN PS [2]; later the similar systems
were constructed in U-70 PS (IHEP, Russia) [3] and also
in AGS (BNL, USA) [4].

It is hardly possible to obtain with calculations a full pic-
ture of coupling impedance of a real vacuum chamber. In
the present paper, the technique to measure an inductive
component of the longitudinal coupling impedance of the
accelerator with use of the γ-transiton jump system is de-
scribed. The given technique is based on the results of
phase equation integration from which it follows that the
optimal position of γ-transition jump with respect to a mag-
netic cycle of the accelerator, at the given set papameters
of a proton beam, is completely defined by the longitudinal
coupling impedance in a long-wave approximation. With
the help of the experimental data, the value and the sign
of the longitudinal coupling impedance at transition in the
U-70 synchrotron are found.

LONGITUDINAL ELECTRIC FIELD

It is convenient to express longitudinal electric field
driven by beam in a surrounding equipment of an accelera-
tor in terms of the longitudinal coupling impedance. In the
simplest case of a smooth vacuum chamber homogeneous
in longitudinal direction, longitudinal coupling impedance

Zn(ω) is defined by the equation identity:

−2πR0En(ω) = Zn(ω)Jn(ω), (1)

linear due to linearity of the Maxwell’s equations. In (1),
the following notations are used: R0 is average radius of
accelerator; Jn(ω) is amplitude n-th harmonic of the beam
current at frequency ω; En(ω) is the longitudinal electric
field harmonic corresponding to the given beam current
harmonic and averaged over distribution of particles in the
beam cross-section. We imply that the dependence of har-
monics upon time t and longitudinal coordinate s is given
by factor exp(−iωt+ ins/R0).

Generally speaking, in case of a non-uniform vacuum
chamber, the n-th harmonic of the longitudinal electric
field is given by all the beam current harmonics. However,
the systematic effect on the n-th beam current harmonic
is imposed by the resonant wave of longitudinal electric
field at frequency ω � nω0 (ω0 is revolution frequency of
beam) whose phase velocity is approximately equal to the
beam velocity. For this reason, in calculations of longitudi-
nal electric self-field of bunches it is still possible to use a
more simple definition of the coupling impedance (1).

By now, a longitudinal dynamics of particles near
transition when the beam is shielded by a smooth ide-
ally conducting vacuum chamber (longitudinal coupling
impedance of which is actually a negative inductance) is
well understood. It can attain a big value at lower ener-
gies. Still, near transition energy, its value usually does
not exceed 10 Ohm. Nevertheless, its maximum effect
on the beam occurs at transition energy due to strong de-
pendence of longitudinal electric self-field on length of
bunches which is minimal in this region.

It is, however, necessary to note that a real vacuum
chamber is not-uniform — it contains numerous equip-
ment longitudinal coupling impedance of which at lower
frequencies is a positive inductance and, hence, has the op-
posite sign in comparison with a smooth chamber. So, for
example, the longitudinal coupling impedance of a smooth
vacuum chamber in U-70 is almost completely compen-
sated due to that of pickup electrodes [5].

On taking longitudinal coupling impedance as Zn/n =
±i · const, we shall take into account both variants — with
positive and negative inductances. Multiplying both parts
of the impedance definition (1) at exp(ins/R0) and, then,
summarizing over n, we shall get the following expression
for the longitudinal electric field of bunches

E(s, t) = −sgn
(
Zn

n

)
v

2π

∣∣∣∣Znn
∣∣∣∣ ∂ρ(s, t)∂s

, (2)
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where ρ = J/v is linear density of charge , v is beam ve-
locity.

PHASE EQUATION

Phase equation accounting for a longitudinal electric
field of bunches E , is:

d∆p

dt
=
eV

2πR0
(cosϕ− cosϕs) + eE(ϕ, t);

dϕ

dt
=
ηωRF

ps
∆p, (3)

where ∆p = p − ps is momentum difference between the
particle in question and a synchronous particle, e is charge
of a particle, V is rf voltage amplitude, ϕ is phase of a
particle about crest of the rf wave,ϕs is synchronous phase,
ωRF is rf frequency, phase slippage η = α − 1/γ2 (α is
momentum compaction factor, γ is relativistic factor).

Phase oscillations of particles close to transition consid-
ered as small. Therefore, it is convenient to proceed in (3)
to phase χ = ϕ − ϕs, |χ| � 1. We shall also assume that
the transition value itself depends on time t, so the param-
eter η is described by:

η � 2 γ̇trt−∆γtr(t)
γ3tr0

, (4)

where γtr0 is the unperturbed transition value, γ̇tr is the
transition crossing speed in the absence of∆γtr jump, time
t = 0 corresponds to γ = γtr0.

As the major contribution to longitudinal mismatching
of bunches at transition is given by the main (linear) part
of electric field E , it is convenient to proceed from a linear
charge density depending on phase χ under the parabolic
law. In such case we shall receive from (2) the final expres-
sion for the field E :

E = sgn
(
Zn

n

)
3qI0
2R0

∣∣∣∣Znn
∣∣∣∣ χχ̂3 , (5)

where q is the harmonic number, I0 is dc current of beam
containing q identical bunches, χ̂ is phase half-length of
bunches.

On linearizing external accelerating field in the first
equation of system (3), and also on taking into account
the expressions (4), (5) and replacing variables (∆p, t) by
(y, τ = t/t0),

t0 =

(
πm0γ

4
tr0R

2
0

qeV | sinϕs|γ̇tr

)1/3
; ∆p =

eV | sinϕs|t0
2πR0

y,

(6)
where m0 is the proton rest energy, we shall transform
phase equation to the following form:

d

dτ

1

τ − f(τ)
dχ

dτ
=

(
±1 + κ

χ̂3

)
χ. (7)

Here the signs ”plus” and ”minus” accordingly stand for
beam energies below and above transition, the ∆γtr-jump

is described by the function f(τ) = ∆γtr(τ)/(dγtr/dτ),
the parameter κ is proportional to beam dc current I0 and
longitudinal coupling impedance:

κ = −sgn
(
Zn

n

)
3πqI0
V | sinϕs|

∣∣∣∣Znn
∣∣∣∣ . (8)

Thus, κ > 0 in case of positive inductance.

LONGITUDINAL MATCHING OF BEAM
AT TRANSITION

Transition crossing by beam in U-70 is extremely quick
in comparison to period of phase oscillations. So, as a
first approximation, it is possible to assume that transition
crossing by beam at presence of the γtr-jump occurs in-
finitely quick. In that case, as following from fig. 1 at the
moment τ3 = τ2, changing of parameter τ − f(τ) in equa-
tion (7) is adiabatic everywhere except for a point τ = τ2
where a discontinuous jump of function f takes place. We
get from (7) the following equations for the boundary phase
trajectories:

y1,2(χ) = ±
[

1

τ2 − f(τ2)

(
1± κ

χ̂3tr

)
(χ̂2tr − χ2)

]1/2
,

(9)
where χ̂tr is phase half-length of bunches at γ = γtr, in-
dexes 1, 2 under y are accordingly related to beam directly
prior to transition energy (τ2 − f(τ2) = ∆f − fmax) and
right after transition (τ2 − f(τ2) = ∆f ).

Figure 1: The scheme of the γ-transition jump.

To get longitudinal matching of bunches after transition,
the following condition for peak values of y1,2 should be
fulfilled: ŷ1 = ŷ2. Therefrom, the necessary locking
of current pulses forming the γtr-jump to the time mo-
ment corresponding to unperturbed γ-transition value can
be found:

τ2 =
fmax

2

(
1− κ

χ̂3tr

)
. (10)

In such case parameter τ2 = ∆f can be measured in
accelerator. Thus, it is possible to find the ratio ∆f/fmax
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and, accordingly, the value and sign of κ,

κ = χ̂3tr

(
1− 2 ∆f

fmax

)
. (11)

Taking into account the definition (8) of κ one can see
from (11) that the sign (Zn/n) depends on the value of
∆f/fmax: if 0 < ∆f/fmax < 0.5 then longitudinal cou-
pling impedance is a positive inductance and it is negative
one in the case of 0.5 < ∆f/fmax < 1.

Equation (11) could be transcendental if the phase half-
length of bunches χ̂tr depended on κ. Fortunately, it is not
the case. Using formulae (9) and (11) we get the following
expression for χ̂ at transition:

χ̂2tr =
S

π

√
fmax

2
, (12)

where S =
∮
y dχ is phase volume of a bunch.

The process of transition crossing by the intense beam
was also studied with the help of numerical integration of
equation for phase oscillations amplitude

d

dτ

1

τ − f(τ)
dχ̂

dτ
= ±χ̂+

(
S

π

)2
τ − f(τ)
χ̂3

+
κ

χ̂2
(13)

with function f(τ) approximately describing∆γ-transition
jump in U-70. Results represented above, as one would
expect because of small duration of the ∆γ-transition roll-
off part, are completely confirmed [5].

LONGITUDINAL COUPLING
IMPEDANCE OF U-7O

Figure 2: Oscillogram from U-70 peak detector signal
(∆γtr-jump is on; sweep — 10 ms/dev).

Fig. 2 shows oscillogram of the peak detector signal; it
corresponds to the case when longitudinal matching with
the help of ∆γtr-jump for five bunches with total inten-
sity of 1.6 · 1012 ppp has taken place. The U-70 magnetic
field was H1 = 1404 Oe at the moment when ∆γtr-jump
was switched on and the jump was switched off at the field

H2 = 1576 Oe. Magnetic field rate at transition is 4.44
Oe/ms (γ̇tr = 26.7 s−1) so the time interval ∆t during
which the magnetic field of the accelerator is changed from
H0 up to the value H2, where H0 = 1520 Oe corresponds
to unperturbed value of the transition energy (γ = γtr0), is
equal ∆t = (H2 −H0)/Ḣ = 12.6 ms. On taking into ac-
count that during time ∆t relativistic factor γ increases by
∆γ = 0.35 and also the jump amplitude (∆γtr)max = 0.9,
we have∆f/fmax = ∆γ/(∆γtr)max = 0.39.

Since we have got∆f/fmax < 0.5, it is at once possible
to make a conclusion on a sign of the inductive impedance
of the U-70 vacuum chamber — it is positive, as one would
expect, because κ > 0 according to (11).

For estimating the value of longitudinal coupling
impedance, it is necessary first to calculate from formula
(11) parameter κ, and, then, to calculate |Zn/n| from def-
inition (8) of κ. Taking into account ratio (11) for the ob-
served value ∆f/fmax = 0.39 we have κ/χ̂3tr = 0.22.
Substituting fmax = 8.7 in formula (12) and average value
of the phase volume which equals S = 0.11 according to
measurements in the accelerator (in (∆p, s) coordinates it
equals 0.8 eV·s) we shall get χ̂tr = 0.27 and κ = 4.3·10−3
accordingly.

Substituting then into (8) the obtained value of κ and also
the U-70 parameters q = 30, V | sinϕs| = 390 kV, I0 =
0.3 A corresponding to the data shown in fig. 2 we have the
following result for the longitudinal coupling impedance
— |Zn/n| � 18 Ohm. As carried out analysis has shown
[5], the accuracy of the average S value measuring during
the experiments was not worse than 10%. Therefore, the
measurement error of |Zn/n| should be within the limits of
±15%, as it is clear from the formulae (11) and (8). Thus
the value of the U-70 longitudinal coupling impedance in a
lower frequency range is estimated as 15 Ohm< |Zn/n| <
20 Ohm.
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