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Abstract 
 

The precise calculations of beam dynamics are needed 
to make choice of optimal design parameters of race-track 
microtron. As a result, the necessary physical require-
ments to the accelerator systems become found. For cal-
culation of the magnetic field, POISSON LANL code is 
used. Acceleration of the beam is investigated with the 
help of the program of MathCad. 

Nonlinear  distribution of the field in magnets of micro-
tron with adjustable reverse field was simulated. The 
equation of motion of a beam in bending magnets of re-
circulation system are found and solved by a numerical 
method. Trajectories of the beam for all orbits in a micro-
tron are received.  
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The recursive equation for calculation of the largest area 
of injected beam phase and power spreads providing 
steady acceleration process is written. The acceleration of 
the beam with maximal phase-energy area through all 
orbits of microtron was simulated. 

The velocity of accelerated particles on first orbits dif-
fers from velocity of light. The minimal energy of injec-
tion provided their successful acceleration under this con-
dition is determined. 
 

INTRODUCTION 
 

At an input and an output from each magnet of a race-
track microtron the beam crosses strongly non-uniform 
fringing field which will defocus it in a vertical direction. 
To decrease this influence, additional poles [1] are pro-
vided in a microtron bending magnets. These poles are 
located along input gap, with the reverse to main mag-
netic field direction. In this case space distribution of 
fringing field also changes. Additional poles influence on 
focusing may be controlled by adjusting the reverse field.. 
The presence of the reverse field effects the distance be-
tween orbits and increases the nonlinearity in dependence 
of length of orbit on energy of the beam. This of nonlin-
earity results in reduction of a range of allowed input in-
jection phases. That influences negatively on conditions 
of acceleration stability and restrict the lower limit of in-
jection energy. Also, the difference between beam veloc-
ity and velocity of the light influences minimal allowed 
injection energy.  
 

To illustrate this mathematical modeling, the 175 MeV 
CW race-track microtron project developed at the Insti-
tute of Nuclear Physics of Moscow State University [2] is 
taken as an example.  
 

 
MATHEMATICAL MODELING 

  
Study of process of acceleration and passage of beam 

through the orbits was carried out by modeling of trajec-
tories of the beam by using MathCAD7 program [3]. The 
field in magnets was modeled with the help of the pro-
gram POISSON, kindly granted by Los Alamos Accelera-
tor Code Group LANL. 

The motion of the electrons was considered in the sys-
tem of coordinates shown in Fig. 1.  
 
 
 
 
 
 
 

Fig. 1. System of coordinates 
 

The two-dimensional distribution of the magnetic field  
and its first derivative was received by Poisson program 
taking into account the gap geometry (Fig. 2) Space dis-
tribution of the fringing field in the gap controlled by non-
dimensional factor k. 

It is assumed in all calculations: the coordinates dimen-
sion  [x, y, z, s] = cm,  magnetic  induction   dimension –     
 –[B] = Gs,  energy – [E] = MeV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Fig.2. Magnetic field and its first derivative in fringing 
field of the gap area. On the top the gap geometry in the 
same scale is shown. 
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The equations of motion of electrons in the gap of mag-
nets restricted by the first derivatives of a magnetic field 
[4, 5], look like: 
 
 
 
                                                                                       (1) 
 
 
 
 
 
                                     In specified units: E [MeV] - elec- 
                                      tron full energy,E0[MeV]-electron 
                                      rest energy. 
 

The orbits distribution in bending magnet was calculated 
by motion equations integration in median plane along a 
trajectory from an index point s = 0 at z = 0 up to final – 
Smax, which corresponds to magnet output, also at z = 0. 
Initial and final points of orbits are located at z = 0, where 
the fringing magnetic field is practically equals to zero. 
On Fig. 3 the first 5 orbits received by numerical integra-
tion are shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Five initial equilibrium orbits. B=9808 Gs 
Es1=11.46 MeV, Es2=17.19 MeV, Es3 = 22.92 MeV, 
Es4 = 28.65 MeV, Es5 = 34.38 MeV. 

 
During integration, dependence of length of orbit on en-

ergy – Smax(E) and its deviation from linear law is also 
determined.  

The increasing of the orbit length results in phase shift 
of accelerated particles. That can cause the disturbance of 
synchronous acceleration. Infringement of synchronism 
occurs also because of insufficient electron relativity at 
initial stage. The biggest phase shift occurs in the first 
orbits.  

By means of special devices, beam was one directed into 
the common orbit, and it passes linear accelerator, two 
bending magnets and drift intervals, on one of them there 

is a linear accelerator. Having turned on 3600, the beam 
comes back in magnetic field.  

A recursive calculations method is reproduced accelera-
tion process in the microtron.  

Initial conditions for injected particles located on a 
boundary ellipse are set in the parametric form. As a pa-
rameter, the angular coordinate of j-th particle is used. 
The inclination angle of a boundary ellipse in respect to 
the phase coordinates was one found out by multiplication 
of ellipse vector by a matrix of turn on angle α [see equa-
tions (2)]. The ellipse semi-axes are set through its prod-
uct SEo and their ratio – Eθo. 
 

( )
 
 
 
 
Input Parameters of Accelerating System and 
Injected Beam: 
 
Accelerating frequency.............. f = 2449.76 ⋅ 106 Hz (*). 
Wavelength of an accelerating voltage.... λg = 12.242 cm. 
Amplitude of an accelerating field.......... V = 6.0 MeV/m. 
Magnetic field ………………………… In = 9874 Гс (*). 
Equilibrium energy gain ........................ ∆Es = 5.73 МэВ. 
Length of straight 
Drift space  Ld = (1000 + ∆L) cm, ∆L =-8.5398 cm (*). 
Equilibrium phase........... θs = acos (∆Es/V) = 0.301 rad. 
Injection energy of axial particles ...Eo = 19.231 МэВ (*). 
The area of a boundary 
injected ellipse ………...…..…. πSE0 = 0.072 МэВ ⋅ rad. 
The ratio of power semi-axis 
to phase one ……………………. Eθo = 0.7 MeV/rad (*). 
The angle of turn of 
the boundary ellipse …………………... α = - 0.8 rad. (*). 
 Injected particle parameter …………………………... τ. 
Injected particle index ....................................... j = 1...61. 
Deviation of   injected boundary particles energy 
from axial particles energy.........................................δEoj. 
Deviation of the injected boundary particle phase 
from a phase of axial particles.................................... δθj. 
Phase of  j-particle injection ...................................... θoj. 
Energy of j-particle on n-orbit.................................... Enj. 
Factor of a reverse field ………………...….k = 1.02 (*). 
Number of orbits ………………………………… n = 26. 
(*) - The values provided optimum mode of acceleration 
for all of orbits. 

Passing the drift intervals and bending magnets, parti-
cles come back in an initial point. Thus they are displaced 
on a phase refer to an accelerating voltage not exactly on 
the angle 2π.  
 

Particles phase shift while passing of the drift interval -
θdr(E): 
                                                                                      (3) 
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The length of a drift interval – Ld = 1000 + ∆L, ∆L – an 
adjustable part of a drift interval..C – velocity of light. 

Gain of a phase of particles at passing of a acceleration 
interval θac(E): 
 E s
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                                                                                      (4) 
 

In calculations, it is one assumed that particles are ac-
celerated in average field and the gain of energy is equal 
to equilibrium one – ∆Es. The length of an accelerating 
gap is equal to a drift gap – Ld. 
 

The particle phase gain at passing of two bending mag-
nets θ2m(E): 
 
                                                                                     (5) 
 
Recursive Equations of Changing of Energy and 
Phase at the Acceleration Process. 
 

Energy j-th particle on the first orbit – E1,j is defined by 
axial particle energy at injection Ео, derivation of j-th 
particle from axial δEoj and a gain of energy ∆U1,j after 
first passing of accelerating gap. 

The injected particles phase θoj is summarized of initial 
phase deviation, θo and a deviation of a phase of j-th par-
ticle from a phase of an axial particle δθoj. 

After passing of accelerating section j-th particle on the 
n-th  orbit increase its energy ∆Un,j and owing to passage 
of an accelerating site, a drift site and two rotary magnets, 
comes back in an initial point of injection with changed 
phase θn,j. Then the process repeats. 
 
 
 

 
 
 
 
 

 
 

Es0n,j – energy of an axial particle in an orbit n  
at SEo = 0. 
θs0nj – a phase of an axial particle in an orbit n at 
SEo = 0. 
The equations (6) allow to investigate the behavior of 

the beam injected in a race-track microtron at all stages of 
acceleration. By changing entrance boundary ellipse pa-
rameters (the semi-axes product  – SEo, their ratio – Eθo, 
a angle of inclination of ellipse – α), the characteristics of 
accelerating system (frequency of accelerating field, rate 
of acceleration, position of an equilibrium phase, mag-

netic field, energy of injection and an input phase) and 
observing of change of the shape of an ellipse at passing 
of the beam on all orbits, it is possible to determine the 
greatest area of capture and optimum conditions of accel-
eration and injection. 

Varying the parameter n one can monitor the accelera-
tion process in each orbit. Changing parameter j it is pos-
sible to monitor each particle from a boundary ellipse and 
to determine area from which particles drop out of a mode 
of acceleration under adverse conditions. At SEo = 0 ac-
celeration of axial particles is under investigation. 

For a race-track microtron initial speed of particles im-
poses restriction on the minimal energy of injection. 

In a described variant:  
The minimal energy of injection providing reasonable 
capture - Eo = 19.23 МэВ. 
The greatest area of a boundary ellipse at injection 
which is accelerated lost-free equals to –  
πSEo = 0.072MeV⋅ rad. 
The nearest minimal energy of injection –  
Eo = 13.10MeV. 
In this case, the greatest  area of a boundary ellipse 
of injection, in which the particle are accelerated – 
πSEo = 1.89 ·10-4 MeV⋅ rad. 

One can see from the data obtained, that decreasing of 
injection energy down to the first possible value, leads to 
disappearing of the capture area practically complete. 

Thus, the described calculations show that the race-track 
microtron with the specified parameters can work suc-
cessfully. However, it is necessary to provide the fine 
tuning of a magnetic field, frequency of the accelerating 
generator and length of straight intervals. 
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