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Abstract

In this report we develop an approach to acceleration and
focusing using some concepts from optimal control theory
and L-moment problem. Several scenarios have been dis-
cussed earlier [see Z. Parsa and V. Zadorozhny, proceed-
ings PAC -03, EPAC -02]. Those are given here in more
detail in a simulation of acceleration and focusing for a
longitudinal motion. Individual acceleration scenarios are
considered in the framefork of the approach presented.

PROBLEM STATEMENT

A new approach to studying a nonlinear bunched beam
dynamics based on the self-consistent Vlasov – Maxwell
equations and arguments from optimal control theory is
considered. An interesting property of Maxwell equations
first stated by V.I. Zubov is employed. The property con-
sists in the following. Given a specified beam motion in
R3 there exist electric and magnetic fields which realize
this motion. This property along with some mathematical
aspect of optimal control theory with a given quality cri-
terion allows to construct in certain cases a solution to the
problem of focusing and acceleration for charged particle
beams. The approach can be regarded as a development of
the known algorithm by R.C. Davidson.

This approach supposes the following main steps:
a) We have to find the Vlasov distribution function

f(t, x, v) so that the given transport conditions are satis-
fied. Those may include requirements on an acceleration,
current density, value of focus, minimum of some criterion
and so on. The idea is to look at this problem as to some
optimal control problem [1]. The Vlasov equation is trans-
formed into a Fredholm equation [2], [3] and then we can
find f(t, x, v) and dispersion waves.

b) Now we can construct a beam densityρ(t, x) and a
beam current densityj(t, x) according to Maxwell equa-
tions. Thus, there exist such fieldsE andH which provide
a longitudinal motion of a beam according to the fixed law
of motion.

Based on results of Zubov and Halmos this approach
makes it feasible to apply the direct Lyapunov method
to nonlinear problems for which an empirical method of
constructing a Lyapunov function generates a certain ker-
nel operator in a domain of its asymptotic stability, and
then the Lyapunov equation yields a well known Fredholm
equation. The self-focused and accelerated particle beams
are studied using an analytic solution to the self-consistent
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Vlasov equation. A Lorentz force is treated as a control pa-
rameter (a control vector describing control fields), where
a problem of optimal control is resolved. According to the
Poisson equations charge and current densities are studied
in the framework of a programming problem in an usual
form.

One of the aims is to study the oscillatory behavior of
a solution to the Vlasov-Poisson equations, and dispersion
properties of nonlinear waves.

MAIN RESULT

A sufficiently general kinetic description of a particle
beam behavior in an electrostatic field is given by the
Vlasov – Poisson system (VPS):

∂tf + v∂xf + E∂vf = 0,

∇E = −4πρ.

Here f = f(t, x, v) is a distribution of particles in a
phase space{x, v} depending, on the timet; x ∈ R3,
v ∈ R3, E = E(t, x) is the electric field, and

ρ = q

∫
f(t, x, v)dv, j = q

∫
vf(t, x, v)dv

are the charge density and the current density respectively.
The VPS problem consists in proving the existence of

a C1 or Lp solution f(t, x, v) for all t ≥ 0 where
f(0, x, v) = ξ(x, v) is a given function.

The report goal is to show a new approach for the numer-
ical simulation of beam dynamics based on the universal-
ity of Maxwell equations (V.I. Zubov [1]) andL-moment
problem (M.G. Krein [4]). Here we only briefly describe
how theL-problem reduces questions of choice of needed
field E(x) to an approximation problem.

Let us represent the solutionf as a sum

f =
∑

Ckψkeλkt, k = 1, 2, ...

where ψk = ψk(x, v), Ck andλk are some constants.
This reasoning yields a simple equation

λkψk+E∂vψk =
∫

Ωx

∫

Ωv

v∂xΦ(x−y; v−u)ψk(y, u)dudy

whereΦ(x−y; v−u) is a Chezaro kernel. The calculation
can be carried out and a solution will be a unique one iff

∫

Ωx

∫

Ωv

E∂vψk ·ψ∗kdudy = 0. (1)
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Hereψ∗k is a conjugate function toψk, andΩx, Ωv are
space and velocity volumes where the motion is carried out.

Now we will develop the object in view some simple sit-
uation, somehow, in order to construct theE(x) we can use
relation (1).L-moment problem for a continuous medium
of the physical system is considered at defined mesh points
{Θα} , α = 1, 2, ..., M and may be written down as fol-
lows

N∑
α=1

E(Θα)ηk(Θα) = 0, k = 1, 2, ..., N,

N∑
α=1

E(Θα)Ωα = 1

Here {Θα} is sets of the special given random points,
N ≤ ∞, ηk(Θα) = E∂vf0, andf0 is some optimal pro-
cess, such that

∂t = 0 ⇒ ∂xf0 = −∂vf0.

This technique allows to provide a precise numerical cal-
culation of the dynamics of charged particles in beams. The
L-moment method allows studying the detailed character-
istics of bunched beams, taking into account a distribution
of particles, real self and external fields, construct optimal
fields, and others.

It is obvious that function theE(x) is such that the
known equations are valid.

More precisely, the functionE(x) given above must be
such that the following conditions hold true

∇E(x) = 4πq

∫
f(t, x, v)dv, (2)

rotE(x) = 0. (3)

This system is overdetermined and for this reason we con-
sider the following approach [5].

The second equation of the system (2), (3) is unresolved
for any vector fieldE. Indeed, letrotE = $, $ ∈ L2,∫

fdv ∈ L2 and from here we have got the following
condition: divrotE = 0. Thus we go to the equation
div$ = 0. But all fields inL2 form a subspaceS ⊂ L2.
Thus the system (2), (3) may be resolved in the subspace
S × L2 of the spaceL2 × L2 only. But an orthogonal
supplement to subspaceS in L2 is the gradient functions
which equal vanish on the boundary∂Ω. In this connection
we shall associate some scalar functionP . This reasoning
yields the following system

∇E(x) = 4πq
∫

f(t, x, v)dv,

rotE(x) + gradP = 0 (4)

with conditionP∂Ω = 0 and other condition on the bound-
ary ∂Ωx : βE∂Ωx = α. The system (4) is the elliptic
system and it can be resolved [5].

EXAMPLE

We consider equation

∂tf(t, x, v) + v∂xf(t, x, v) + E(x)∂vf(t, x, v) = 0 (5)

wherex, v ∈ R1. Now we will be able to find a solution of
(5) in a formf =

∑
CkΨk(x, v)eiωt [6].

It leads to the equation

iωΨk + v∂xΨk + E∂vΨk = 0. (6)

The functionΨk(x, v) can de represented in the form

Ψk =
∫ N∑

k1,k2

(
1− |k1|

1 + N

)(
1− |k2|

1 + N

)
×

×ein1x+in2vein1y+in2uΨk(y, u)dµ

wheredµ = dydu.
Obviously, (6) is equivalent to

(iω + ik1v)Ψk = R (f,E) (7)

where

R (f,E) =
∫ N∑

k1,k2

(
1− |k1|

1 + N

)(
1− |k2|

1 + N

)
×

×ik2E(x)ein1x+in2vein1y+in2uΨk(y, u)dµ.

The equation (7) has a solution if and only ifω andk
correspond to a dispersion functionε (ω, k).

The functionΨk will be the solution of (7) which is clas-
sic solution or weak solution. But the spectrum of the op-
eratorR is determined in accordance with the dispersion
law.

In order to expound the paper clearly some notations will
be nedeed. Let us introduce the following ones

(1− |k|
1 + N

) = µk,

ϕk(x.v) = µk1µk2e
ik1x+k2v.

For simplicity, we assumex, v ∈ R1 andv ¿ c.
Now we can rewrite (7) as follows

(iω − ik1µkv)Ψ(x, v) =
∫ π

−π

∫ π

−π

∑
ik2E(x)ϕk(x.v)ϕ∗k(y, u)Ψ(y, u)dτ (8)

wheredτ = dxdv, x, y ∈ [−π, π] , v, u ∈ [−π, π].
By integrating (8), it is easy to see that for the firstN

values we have got

ΨN = (ω − kv)−1
N∑
1

k2E(x)ϕk(x.v)hk. (9)

hα =
∫ π

−π

∫ π

−π

ϕ∗α(y, u)Ψ(y, u)dydu.
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Using the notation

φij =
∫ ∫

E(y)ϕi(y, u)ϕ∗j (y, u)dydu (10)

we can get at once thathα satisfies the following equation

hα = (ω − αv)−1
N∑
1

φαqhq. (11)

Obviously if the electrostatic fieldE is given then we can
find the matrixΦN = [φij ]

N
1 and will resolve the equation

(11).
Proceeding as before, we have got the spectrumσ (ΦN )

of the matrixΦN . If λ ∈ σ(ΦN ) then we can find disper-
sion relations

λ = ω − αv, (α = 1, ..., N).

On the other hand, if the vector-functionE is unknown
we have other conditions. It is easy to see that the matrix
ΦN is the Toeplitz one, and if we know its from other con-
dition then the electrostatic fieldE may be calculated.

As it is known, a distribution of eigenvalues of the
Toepliz matrixT is determined by the functiong which
generatesT (g).

In our case it is the functionE. If it is a bounded function
then there exist constants−∞ < m, M < +∞ such that
m ≤ λmin, λmax ≤ M . Moreover, for any fixedN the
following relation holds:

λN
ν ÷ E

(
−π +

2νπ

N + 2

)
.

When taking for example a case

E(x) = E0 + 2 (a cosx + d sin x) , x ∈ [−π, π]

we obtain

λN
ν = −2 cos

νπ

N + 2
, ν = 1, 2, ..., N + 1.

If the functionE is a Lebesgue function then the distri-
butionσ(T ) coincides with the functiong(x).

ENDNOTE

In this paper we propose a new approach scheme for
solving Vlasov-Maxwell problems on the base of control
theory. From a mathematical point of view this means that
the solutions of the nonlinear evolutionary wave equations
have got simplification in the description by use any results
of control algorithms.

This is due in particular to the presence of the univer-
sality of the Maxwell equation. A lot of analytical investi-
gations and computer experiments are devoted to the study
of this equation. Our earlier works are devoted to these
investigations and also include, in some cases, new analyt-
ical results. In this report we briefly present an approach
to study some problems of beams acceleration and strong
focusing.

REFERENCES

[1] V.I. Zubov, Oscillations and Waves, Leningrad State Uni-
versity, 1989

[2] Z. Parsa and V. Zadorozhny, Focusing and Acceleration of
Bunched Beams, Book ed. Bruce J. King. Colliders and Col-
lider Physics at the Highest energies, New York, 1999, pp.
249-259.

[3] Z. Parsa and V. Zadorozhny, Nonlinear Dynamics on Com-
pact and Beam Stability, Nonlinear Analysis,47 (2001), pp.
4897-4904.

[4] M.G. Krein and A. A. Nudel’man, The Problem of Markof
moments and the extremal problems, Nauka, 1973.

[5] S.G. Krein, Linear Equation in Banach Space, Nauka, 1971.

[6] Yu.S. Sigov, Computer Simulation of plasma turbulence in
open systems, Physica Scripta, vol. T2/2, 1982, 367 p.

236

Proceedings of RuPAC XIX, Dubna 2004


