CYCLOTRON FOR BEAM THERAPY APPLICATION

Yu. G.Alenitsky, S.B.Vorozhtsov, A.A.Glazov, G.V.Mytsyn, A.G.Molokanov, N.L.Zaplatin, G.A.Karamysheva, S.A.Kostromin, L.M.Onischenko, E.V.Samsonov, DLNP, Joint Institute for Nuclear Research, Dubna, Russia

Abstract

The proton beam for radiation therapy application in Russia for the first time [1] was created in 1967 on the base of Phasotron (Laboratory of Nuclear Problems JINR). Now an energy of extracted proton beam is $\mathrm{Ep}=680 \mathrm{MeV}$, intensity $\mathrm{Ip}=3 \mathrm{mkA}$ [2].

A six-cabin medical facility has been developed and put into operation on this beam [3]. Now in practice of treatment on medical beam LNP JINR the most frequently used beam has the energy 170 MeV and current Ip ~ $0.1 \mathrm{mkA}[4,5]$.

We suppose that it is more rational to create a new cyclotron with required parameters of beams and to arrange it in the LNP JINR for use in a medical complex. The design proton beam energy is: Ep~200 MeV[6]. Cyclotron is proposed on the basis of compact fore sectors magnet with ring opposite yoke having a diameter of poles $\emptyset=3 \mathrm{~m}$. Two dees accelerating system is located in valleys.

THE BASIC PARAMETERS OF CYCLOTRONS FOR MEDICAL APPLICATION

Now IBA and SHI firms create the project [7] of the cyclotron on energy of protons 235 MeV especially for the therapy and some such accelerators already were put into operation. Firm ACCEL Instruments GmbH [8] develops superconducting cyclotron on energy of protons 250 MeV .

Table 1: Main parameters of cyclotrons

PARAMETER	C-235 IBA	C-250 ACCEL	C-190(H) JINR LNP	C-200p JINR LNP
Energy of protons (MeV)	235	250	$70-190$	~ 200
Average magnetic field (T)				
At center	1.739	~ 4	0.77	1.33
At extraction radii	2.165	~ 4	0.92	1.64
Extraction radius (m)	1.08	~ 0.9	~ 2.1	1.4
Magnetic field at extraction radius				
(T)	3.09	4.0	0.6	2.65
hill	0.985	1.6	1.1	0.95
valley				
Gap (mm) valley \quad hill	600		380	400
	$96-9$	-	140	50
Number of sectors	4	4	4	4
Main coil ampere turn (kA)	525	-	150	340
Power consumption (kW)	190	$40(c o o l i n g)$	120	170
Weight of magnet (T)	210	90	400	300

alen@nusun.jinr.ru

The magnetic system consist of sectors (1), poles (2), ring top and bottom horizontal yokes (3), coils (4) and vertical yoke (5) (see figs. 1). The required configuration of the magnetic field is formed using a spiraled and angular extent of sector shims depending on radius.

The complete angular extent of one sector on a pole composes 55°, thus there is an opportunity to place two 42° resonators in valley.

Figure 1: Plane view of the magnetic system of proton cyclotron C200p

Beam Dynamics

In figs. 4-7 the dynamic characteristics of beam in the magnetic field are given. The betatron frequencies of axial and radial motion (fig. 4) are in allowable limits

Figure 2: Computer model of the magnetic system of C200p (bottom part of the magnet, hole for coaxial line of RF system can be seen)

Working point diagram along the acceleration in C 200 p is presented in figure 5. The point to point distance is 10 MeV . The most dangerous resonance $\mathrm{Q}_{\mathrm{r}}-\mathrm{Q}_{\mathrm{z}}=1$ is crossed two times at energies 130 and 170 MeV . Modeling of particle dynamics showed that no axial amplitude increase observed after the resonance (see below) if no skew harmonics presented in magnetic field map. Further computations have to define permissible limits of such harmonics.

Figure 3: Magnetic field map computed by the RADIA code

Figure 4: Free betatron frequencies along radius

Figure 5: Working point diagram of C200p

Figure 6: Phase motion of central particle

Figure 7: Axial motion of one particle

Phase motion of central particle computed along the acceleration (see fig. 6) shows good accuracy of a isochronous field. Particle resonance orbital frequency is 20.4545 MHz . Axial particle motion along acceleration in magnetic field with no skew harmonics is shown in fig. 8. Amplitude of particle radial oscillation was 5 mm during this computations. Changing of axial oscillations amplitude corresponds to the dependence of axial betatron frequency on the radius.

Radiofrequency System

Rectilinear on radius the accelerating resonators and dees have angular extent 42° and 30°, respectively. They are located in valleys between sectors (see figure 1), where the gap between poles is 400 mm . The adjustment and excitation of resonators is carried out through coaxial lines. The central rods used for dees support are located above and below them. A view of high-frequency cyclotron system is given in fig. 8. The basic parameters of high-frequency system designed by a threedimensional program ANSYS are given in the table 2.

Figure 8: RF system with coaxial lines above and bellow
For excitation of accelerating system it is expedient to use a standard high-frequency generator on a suitable power and frequency working on a linkage feeder.

Extraction System

A general view of extraction system is shown in fig. 1. It consists of beam radial enhancement system, electrostatic sections, deflecting and focusing magnetic sections. In the present work the preliminary result of computation of extraction trajectory is shown. To define
the parameters of radial enhancement system and the extraction channel the additional efforts are needed. The energy of the extracted beam in the table 1 is given approximately. The exact value of energy will be determined after corresponding computation of the extraction system.

Table 2: The main parameters of accelerating system

Resonance frequency (MHz)	81,8
case dimensions	
Radial (Rmax) (mm)	1500
Height (mm)	400
Azimuth span (${ }^{\circ}$)	50
dimensions Δ-electrod (dee)	1400
Max.rad.(Rmax)(mm)	50
Height (mm)	30
Aperture (mm)	30
Azimuth span (${ }^{\circ}$)	6
Accelerating gap (${ }^{\circ}$)	
Coaxial line dimensions	800
Between clothe contact plates (mm)	100
Radius of coaxial line inner (mm) outer (mm)	180
From center of cycl. to axes (mm)	750

CONCLUSIONS

The physical substantiation for proton cyclotron on energy of the beam $E_{p} \sim 200 \mathrm{MeV}$ is given. This cyclotron will supply performance of all scientific and medical programs on the medical beam of Dzhelepov Laboratory of Nuclear Problem, Joint Institute for Nuclear Research.

The creation of cyclotron for the medical centers in other interested organizations is possible on the basis of proposed project.

REFERENCES

[1] V.P.Dzhelepov, V.I.Komarov, O.V.Savchenko. Preprint JINR 16-3491, Dubna, 1967; Med. Radiology 1969, №4.
[2] V.P.Dzhelepov, V.P.Dmitrievsky, L.M.Onischenko, Preprint JINR, P9-85-358, Dubna, 1985.
[3] Abazov V.M.et al, Radiation therapy with JINR Phasotron Beams, Dubna, Second Edition,JINR-9-96-387, 1996.
[4] Abazov V.M. et al, Medical facility for radiation therapy with JINR Phasotron beams, E18-94-112, Dubna, 1994.
[5] Stopping Powers and Ranges for Protons and Alpha Particles, ICRU Report 49, Bethesda, USA, ISRU (1993).
[6] Yu.G.Alenitsky at al, Variable energy cyclotron for proton therapy application. Preprint JINR P9-2004-32, Dubna, 2004.
[7] http://www.shi.co.jp/quantum/index.html; http://www.ibaworldwide.com/root_hq/index.html
[8] M. Schillo. The ACCEL Superconducting Cyclotron: A Driver for Proton Therapy. Abstracts of PTCOG-38, Chester, UK, 2003, p. 10.
[9] P. Elleaume, O. Chubar, J. Chavanne, "Computing 3D Magnetic Field from Insertion Devices", Proc. of the PAC97 Conference May 1997, p. 3509-3511.

