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Abstract 
In their 1956 article [1] Panofsky and Wenzel derived a 

relation for the net transverse kick experienced by a fast 
charge particle crossing a closed cavity excited in a single 
rf mode. Later this relation, usually referred to the 
Panofsky-Wenzel theorem, was generalized for cavity 
containing wake field induced by a driving charge. This 
theorem has played very important role in accelerator 
physics. One well-known conclusion of this paper was 
that in a TE mode the deflecting impulse of the electric 
field always cancels the impulse of the magnetic fields. In 
our presentation we more exactly rederive Panofsky and 
Wenzel’s result and obtain correction terms to the 
transverse kick. We show that in a TE mode the net 
transverse kick is not zero. Using the given approach we 
find correction terms to wake potentials which turn out to 
be inversely proportional to the relativistic factor. 
Practical implications of our results are discussed. 

INTRODUCTION 
The well-known Panofsky-Wenzel formula [1] is 

concerned with the net transverse kick experienced by a 
fast charged particle crossing a closed cavity containing rf 
fields 
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It is the practical tool in dynamic of ultrarelativistic 
beams interacting with rf structures. In Eq.(1) e is the 
charge of particle, vz is the longitudinal velocity close to 
the speed of light c, L is the length of cavity,

zA⊥∇
r

 is the 

transverse gradient of the longitudinal component of rf 
vector potential. In the wake potential theory the relation 
(1), usually referred to as the Panofsky-Wenzel theorem, 
was generalized for rf cavities and infinitely repeating 
structures containing wake field induced by a driving 
charge [2]. Some reformulated versions of the Panofsky-
Wenzel theorem are given in Ref. [3] for study of rf 
asymmetry in photo-injectors, in Ref. [4] for the case in 
which phase slippage between the wave and beam is not 
negligible. The interesting interpretation of paper [1] 
results can be found in [5].  

One well-known conclusion, that in a TE mode the 
deflecting impulse of the electric field always cancels the 
impulse of the magnetic field, follows from Eq.(1). 
However, generally, if Az is zero or small enough, the 
formula (1) is not true. The fact is that the Panofsky-
Wenzel theorem assumes in its derivation that the particle 
experiencing Lorentz force moves parallel to the z-axis at 
constant velocity 

z zv v v v⊥= + ≈r r r r . So, in the dot product 

zv v vzA A A⊥ ⊥= +
r r

r r  the second term was neglected. 

 

In the case of Az=0 or 
zv vzA A⊥ ⊥

rr
� , it is necessary to take 

into account the transverse momentum imparted to the 
particle during its transit time through the cavity. In this 
paper we will derive more exactly the Panofsky and 
Wenzel’s relation and obtain correction terms to it. As 
well we will discuss possibility to measure phase volume 
of a bunch with rf deflector based on a TE mode. Finally 
we will attempt to find correction terms to the wake 
potential.  

REDERIVING THE THEOREM 
Following to the Panofsky-Wenzel derivation [1], the 

equation of motion of the particle in terms of a vector 
potential is given 
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where dz=vzdt. Using the following expressions 

( ) ( )v v vA= A A×∇× ∇ − ∇
r r rr r r

r r r , ( )v
A dA

A
t dt

∂ = − ∇
∂

r r

rr

r , and 

expressing the particle velocity as v = v vz z zp p⊥+r r r , 
(where p⊥

r  and pz are the transverse and longitudinal 

momentums, respectively) we can write the equation for 
transverse momentum as 
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Integrating Eq.(3) we obtain the dependence of the 
transverse momentum on a coordinate z 
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where it is assumed that 0A⊥ =
r

 at z=0 and z=L (the 

cavity end walls are normal the z-diraction or the path of 
the particle begins and ends in a field-free region), 

0,p ⊥
r is 

the initial transverse momentum, r⊥
r  is the transverse 

coordinate of the charge. Due to the small 
parameter 1zp p⊥ � , the integral equation Eq.(4) may be 

solved by the successive approximations. Therefore we 
expand it into series on the small parameter  
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Here ( )
0

z

zr p p dzδ ⊥ ⊥= ∫
r r  and it is assumed that 

( )r A Aδ ⊥ ⊥⋅∇
r rrr
� , 

0,r ⊥
r is the initial transverse coordinate of 

the charge. Firstly from Eq.(5) we find the zero order 
approximation of the transverse momentum as function of 
z-coordinate  
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We see that at z=L the zero order approximation Eq.(6) 
reduces to the Panofsky-Wenzel formula (1). Substituting 
Eq.(6) into Eq.(5) we obtain the transverse momentum 
imparted to the particle with the accuracy of the first 
order approximation  
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where ( )0 v
, ,

zt z
A A r z t⊥ =

≡
r r

r .  

From the Eq.(7) we see that in the case of exciting a TE 
mode 0zA =

r

 the net transverse kick is  
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As seen from the Eq.(8), even if 
0, 0p ⊥ =r

 the 

ponderomotive force, which is square on the transverse 
component of vector potential, ensures the non-zero 
transverse momentum imparted to the particle. 

CONCEPT OF MEASUREMENT OF 
PHASE VOLUME BY TE MODE 

DEFLECTOR 
Eq.(8) shows that the transverse momentum imparted to 

the particle by a TE mode dependences on the initial 
transverse momentum. That may point to ability to 
measure phase volume of a beam by using a TE mode 
deflector. Let us rewrite Eq.(8) in components as  
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For the case  

0, 0.xx yya a= =   (11) 

The solution of the equation set (9) is 

0, 0,v , v .y x
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An ultrarelativistic beam  
For a case of ultrarelativictic particles, (vz=c, γ→∞, 

where γ is Lorentz factor ) Eqs.(12) can be simplified  
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    (13) 
Here the transverse kick (Δpx, Δpy) is expressed through a 
beam deflecting from axis (Δx= x-x0, Δy=y-y0) in a drift 
tube of length l which is stationed after the cavity, 
Δpx=m0cγΔx/l Δpy=m0cγΔy/l, m0 is the rest mass, (x0, y0) 
and (x, y) are the transverse coordinates of a particle at the 
entry of the cavity and the drift tube exit, correspondently. 

Let us consider a rectangular box where the following 
TE modes are excited  
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with the eigenfrequency ( ) ( )2 2

,m p c m a p Lω π= + , 

where a, b, L are the edge lengths of the rectangular box 
in x-, y -, and z - directions, correspondently, B0 is the 
constant, ϕ  is the initial phase. 
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0 0 0 0 0 0, ,

, ,

cx x x y y y

x x x y y y

δ δ ϕ ϕ δϕ
δ δ

= + = + = +

= + = +
 (16) 

where <…> is the operator of averaging over particles, ϕc 
is the reference phase.  

We assume that the bunch to be short ⏐δϕ⏐<<2π. 
Setting <x0>=a/2, <y0>=b/2, and substituting Eq.(14, 15) 
for even n and m into Eq. (13) we obtain 
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Setting the reference phase ϕc,k (where k=n,m ) at which 
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we can obtain the initial transverse characteristic bunch  
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Assuming <δϕ>=0 and setting ϕ’c,k (where k=n,m ) at 
which 

( ) ,
, ,cos 1 cos 0

p k p
c k c k

L

c

ω
ϕ ϕ⎛ ⎞′ ′− − + =⎜ ⎟

⎝ ⎠
, (22) 

we can obtain the longitudinal characteristic bunch  
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CORRECTION TERMS TO WAKE 
POTENTIAL 

Using the approach developed above we consider wake 
fields ( ,E B

r r

) in terms of vector and scalar potentials ,A Φ
r
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excited by point charge q traversing the cavity at velocity 

z zv v v , v c⊥= + ≈r r r . Let a test charge e follows with the 

same velocity at distance s from the exciting point-charge 
q. The equation for the kick experienced by the test 
particle in the wake field may be given  
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Integrating Eq.(25) over (0, z), then, expanding p
r

 into 

series on the small parameter 1zp p⊥ � , we find the 

zero order transverse momentum as function of z  
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Further for simplicity we assume that the path of the 

particle begins and ends in a field-free region, 
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and taking into account the definition [2], we obtain the 
wake potential with the correction terms 
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where u associates the correction terms  
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Substituting Eq.(26) into Eq.(28) we obtain  
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As seen from the Eq.(29) the correction terms to the wake 
potential are proportional to γ−1, whereas the modern 
wake theory [2] gives the correction terms which are 
proportional to γ−2. 

SUMMARY 
Rederiving the Panofsky and Wenzel’s theorem we 

obtained the correction terms to the net transverse kick 
which is not zero in the TE mode. That allows to use the 
TE mode deflector to measure phase volume of a beam. 
We found the correction terms to wake potentials which 
are shown to be inversely proportional to the relativistic 
factor. 
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