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Abstract 
Energy recovery technique in rf accelerator based 

applications allows to save rf power and reduce 
radioactive background as well. In this operation mode 
used beam is directed back to the accelerator in 
decelerating rf phase where it returns back its kinetic 
energy to rf field. Thus, rf generator that feeds linac 
covers cavities walls rf losses only and those part of beam 
kinetic energy that used for useful effects production as 
well. The sum of three fields – induced in the linac by an 
external rf source, accelerated and decelerated beams – 
determines energy and phase of the beam at linac exit, 
and together with  beam return path optics amplitude and 
phase of decelerated bunches and hence third component 
of mentioned sum. In the case of positive sign of this 
feedback and sufficient amplification in the closed loop 
just described instability takes place. 

The main equations that determine beam-rf cavity 
interaction in energy recovery rf accelerator are derived, 
single mode approximation being used. Expressions for 
small deviation from steady state are obtained followed 
by stability analysis. Results of calculations for 
increments of instability are presented and discussed. 

INTRODUCTION 
In some electron accelerator applications, only small 

fraction of kinetic beam energy is used, high brightness 
light sources of the next generation and free electron 
lasers being the typical examples. Keeping in mind large 
value of the beam energy in similar applications (it may 
be as large as hundreds megawatts) very fruitful idea to 
recover beam energy is widely discussed and already used 
in all over the world [1,2,3]. In recovery process used 
beam is guided back to the same accelerator in 
decelerating phase and for this reason reduces its kinetic 
energy along the accelerator. In other words, accelerated 
and decelerated bunches are spaced by half period of rf 
field, and in the case of lossless beam recirculation the 
first harmonic of total current is equal to zero and the total 
radiation field is equal to zero as well. The question arises 
whether the recovery process just described is stable in 
the sense that small perturbations of steady state result in 
such behaviour of the system that such perturbations tend 
to zero with the laps of time. Among the many one 
mechanism of feed back in the system beam – cavity may 
take place. Any change in beam energy results in phase 
shift of decelerated bunches if the longitudinal dispersion 
of return path is not equal to zero. This phase shift in turn 
results in phase shift of the voltage induced by 
decelerated bunches in accelerating cavity and thus in 
amplitude and phase of the total voltage at accelerating 
gap changing  and as the result in energy changing 
acquired by the accelerated bunches. This feed back may 

result in instability in the case of its positive sign and 
sufficient amplification in the closed feed back loop. 

Following is quantitative   analysis of the processes just 
described. Single mode approximation is used in beam- 
cavity interaction equations. We limit ourselves by linear 
approach in stability analysis.   

THE EQUATIONS OF BEAM-CAVITY 
INTERACTION 

Fig.1 represents the main features of energy recovery 
linac. Electron beam from injector directed into the main 
accelerator consisting of rf cavities. Being accelerated 
electron bunches are rotated by two arcs consisting of 
bending magnets and entered the same linac in 
decelerating phase. Thus, electron bunches in two beams 
are shifted by the angle close to 180 degrees to each 
others.  

 
Fig.1. General layout of energy recovery linac. 1– magnet 
inflector, 2– main linac, 3 – magnet deflector, 4 – bending 
magnets, 5 – beam absorber. 
 

While passing the main linac in decelerating phase the 
secondary beam looses its energy and with the help of 
deflector at the linac exit leaves accelerator and is 
directed into the beam absorber. In analysis that follows 
we will assume all voltage and currents being time 
dependent as complex exponent function )exp( tiω with 

the appropriate amplitudes which are slow functions of 
time t .  Fig.2 represents these values on complex plane. 

According to the superposition principle the total 

voltage )(ˆ tU Σ at cavity gap is equal to the sum of three 

voltages – the first one )(ˆ tU e excited by the external rf 

generator, while the second )(ˆ
1 tU as well as the third one 

)(ˆ
2 tU  induced by the accelerated and decelerated 

beams: 

)(ˆ)(ˆ)(ˆ)(ˆ
21 tUtUtUtU e ++=Σ ,             (1) 

where t stands for time and “hat” symbols above letters 
denotes complex values. The primary (being accelerated) 
beam energy gain in the main linac is: 
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)ˆRe()cos( ΣΣ == UeeUE ψ              (2) 

Here ψ,ΣU  stand for the amplitude and the phase of 

accelerating voltage and Re means real part. To simplify 
calculations, here and in the formulae followed all 
voltages are understand as energies acquired by unit 
charge after cavity passage.  

 
Fig.2. Voltages and currents on complex plane. I1-
accelerated beam, I2-decelerated beam, U0-the voltage 
induced in cavity by external rf generator, U1-the voltage 
induced by accelerated beam, U2-the voltage induced by 
decelerated beam, U∑-total voltage at the cavity gap. 
 

It follows from cavity excitation electrodynamics that: 
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Here )(tu  stands for voltage of the accelerating mode, 

Q are cavity quality factor, J is the first harmonic of the 

accelerated current, 0ω  is the cavity eigen frequency 
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where 0R  is cavity shunt impedance and β  is cavity 

coupling coefficient respectively.  
Representing beam current and induced field in the 

form 
)exp()(),exp()()( titUutitItJ ωω == ,      (5) 

where )(),( tUtI are slow functions of time one arrives 

to the end at the differential equation for complex 
amplitudes: 

I
Q

R
Ui

Qdt

dU

2
)

2
( 00 ωωω

−=Δ++ .               (6) 

While deriving this equation we neglect the terms which 
are small sufficiently compared to the remaining in (6). 

STABILITY ANALYSIS 
We will carry out stability analysis in linear 

approximations. It follows from (6), that  
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where Δmeans small deviation from steady state. As it 
has been declared in introduction we study beam phase – 

cavity voltage instability mechanism and for this reason 
we assume that 

222222 )exp())exp((ˆ ϕϕϕ Δ=Δ=Δ iiIiII       (8)  

where 2I  and 2ϕ are the amplitude and the phase of the 

decelerated electron bunches at the accelerator entrance. 
In the analysis followed these are assumed be constants, 

while 2ϕΔ is a function of time. The deviation 

of 2ϕ originates from the energy deviation EΔ  at the 

accelerator exit followed by subsequent return path 
changing due to longitudinal dispersion: 

E

TtEL
t

)(2
)(2

−Δ
Λ

=Δ παϕ                      (9) 

The arguments values in formula  (9) reflect the fact that 
there is the delay T between energy changing and 
following appropriate phase shift of the secondary 
bunches. Here T is revolution period, Λ,, Lα are 

momentum compaction factor, magnetic arcs length and 
accelerating voltage wavelength respectively. 
As it follows from (1) and (2)  

)ˆRe()ˆˆˆ(Re 221 UeUUUeE e Δ=++Δ=Δ    (10) 

The equations (7), (10) and (10) determine the behavior 
of the system under discussion for small deviation from 
steady state. These have to be rewritten in real 
representation for following analysis: 
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Normalising all voltages by the amplitude ΣU we have 

the following system after simplifications:  
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Hear ΣΔ=Δ UUu / for all indexes, Σ= eUE /ε  

and ΣΔ=Δ eUE /ε . We will find solutions of the 

system (15)-(17) in the form exponential dependence of 

the variables. Substituting )exp(2 ktu x =Δ and 

)exp(2 ktau y =Δ into the equations above we have: 
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The case 0=k corresponds to threshold of static 
instability (if it takes place). Substituting this value into 
the system (18), (19) and resolving the system relative A  
one has the following expression for instability threshold  
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For instability to take place the expression in brackets 
has to be positive. The instability does take place at all if 
longitudinal dispersion  of beam return path is equal to 
zero or, in our notation, momentum compression factor of 
magnet arcs is equal to zero: 0=α . The feed back is 
broken also if 

0
2
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ω
ωϕ Δ= Q

                                      (21) 

Keeping in mind that angle 2ϕ (recovery angle) is close 

to π in energy recovery accelerator and representing this 

in the form ηπϕ +=2 , η being close to zero, one can 

notice that feed back is broken when η is equal to cavity 

detuning angle.  

If 0/2tan ωωη Δ> Q the feed back becomes negative 

for the case 0>α , and the static instability does not take 
place. But it is well known from feed back systems theory 
that negative in static sense feed back may become 
positive at definite frequency range resulting in unstable 
state. Let us find the solution of the system (18), (19) for 

Ω+=+= ikikk 0ImRe  supposing zero cavity 
detuning. It follows from (18) that  
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This is transcendental system relative the variables 
Ω and A , but simple considerations deliver us to the 
approximate solution  
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Upper formulae determine the least roots of the system 
(22). It follows from (17) and (23), that instability 

threshold for 0sin 2 <ϕα (for zero cavity detuning) 
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where 0/2 ωτ Q=  is cavity time constant. As compared 

with expression (20) instability threshold is 
T

τπ
2

 higher 

provided T>>τ , as it takes place for superconducting 
cavity for example. 

It is worthwhile to note that instabilities just described 
remind those arising in racetrack microtron [4]. Mutual 
dependences of the kind voltage - current and injected 
bunches phase – current inherent to the accelerators of 
microtron types result in similar system behaviour.  

CONCLUSION 
In energy recovery rf accelerator recovered electron 

beam – cavity interaction takes place resulting in static or 
dynamics instability. The instability is coursed by mutual 
dependence of the accelerating voltage and the phase of 
bunches that entered once again the cavity to be 
decelerated. The instability mechanism reminds those 
inherent to high current racetrack microtron. 

The mechanism of beam–cavity interaction just 
explored takes place in rf electron recirculating linac as 
well. Substantial difference is in shunt impedance 
R value for recovery and recirculating linacs. Since 

β+= 1/0RR  for superconducting cavity case 

eryreingrecirculat RR cov<<  for the reason that in the first 

case 1>>β , while in the second case coupling is mach 

less (close to unity for ideal machine). That is why the 
threshold for beam current is shifted to mach higher value 
for recirculating linac. 

The stability problems just described are also discussed 
in paper [5]. 

This work had been stimulated by numerous discussion 
concerning possible schemes of new accelerator complex 
realisation on the basis of superconducting cavities at 
Lebedev Physical Institute [6], and the author is obliged 
to his colleagues for these fruitful discussions.  
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