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Abstract    
The motion of positrons in the interplanar nonlinear 
potential of a straight thin Si crystal and radiation spectra 
are calculated. 
 

INTRODUCTION 
 

By this time the considerable number of experimental 
and theoretical works is devoted to researching the 
radiation at plane channeling of high energy positrons in 
monocrystals [1, 2, 3]. This radiation arises during the 
motion of a charged particle under a small angle in 
relation to a crystallographic plane and for positrons with 
energies up to ∼20 GeV is monochromatic enough and is 
characterized by high intensity. At energies of positrons 
more than ~20 GeV monochromaticity of the radiation 
strongly degrades. In September, 2009 in CERN the 
experiment INSURAD devoted to research of radiation at 
various orientations of bent monocrystals has been made 
at energy of positrons of 120 GeV. The radiation type of a 
relativistic particle depends on the value of multipole 
parameter ρ . When 1<<ρ  it corresponds to the interfe-
rence type (dipole approximation) of the radiation formed 
along sufficiently large length of the crystal. The case 
with 1>>ρ  is close to the synchrotron radiation. At ener-
gies of positrons 100 GeV and more the parameter ρ  can 
exceed 20 units for a considerable part of the particles.  

In the given work we wish to receive the following 
results: to define characteristic parameters of motion of an 
ultrarelativistic particle in real plane potential of a mono-
crystal and to study the influence of its nonlinearities on 
ensemble of particles captured in a mode channeling; to 
calculate radiation spectrums of positrons with energies 
an order 100 GeV at their different entry initial conditions 
on an input in a monocrystal. 
 

INTERPLANAR ONE–DIMENSIONAL 
MOTION OF CHANNALED POSINRONS 

The motion of a charged ultrarelativistic particle in the 
interplanar electric field D of a monocrystal can be 
described by the following system of equations 
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where: syx ,, - the Cartesian co-ordinates of a particle 
(the electric field D is directed along the axis x ); γ,, eE - 
energy, charge and gamma factor of a particle, according-
ly; t - time, c - velocity of light. The first equation de-
scribes periodic motion along x , the third equation re-

flects the influence of transverse motion on longitudinal 
one. From the above equations it is seen that the problem 
of finding the trajectory of a particle in three-dimensional 
space is reduced to finding the function )(tx . 

We will consider periodic (generally nonharmonic) 
motion of positrons with energy of 120=E GeV in the 
interplanar potential of a straight crystal Si with orienta-
tion (011). The interplanar potential is calculated for sili-
con at a room temperature as it is described in work [4]. 
The interplanar potential of interaction of a positron in a 
straight crystal is defined by expression [4, 5]  
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where:: dx /2=ξ  - normalized interplanar coordinate, 
]1,1[ +−∈ξ ; 92.1=d Å - interplanar distance in (011) chan-

nel; ( )1313757948110553155223407844386132132 ....... −−−−=α
r  in 

[eV/Å]; such values of αr  provide 0/ =ξddU  at 1±=ξ .  
In a Fig. 1 the dependence of normalized frequency 

omm /)()( ωξωξ =Ω  on the amplitude of periodic motion is 

shown, where: sec/10013.5)/||2( 132/12
1o ×≅= dEcαω   - 

frequency of oscillations with small (zero) amplitudes in 
the potential hole )(ξU . The maximum displacement of 
periodic motion is interpreted as amplitude mξ . The 
motion of a positron in normalized potential well 

dUU ||/)(2)(~
1αξξ =  is described by the canonical equations 

pdd =τξ /      и    ξξτ dUdddp /)(~/ −= ,             (2) 
where: toωτ = - the dimensionless time (phase); 

εξ =+ )(~2/2 Up - the transverse  energy (integral of moti-
on). Maximum deviation (amplitude) )(m εξ  is defined 
from equation  εξ =)(~

mU . The dependence of normali-
zed frequency Ω  on amplitude mξ  is determined by   
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The multipole parameter ρ  is expressed through 
parameters of plane periodic motion of a particle as 

follows [1]: ><= 2
x

2 )/(2 cυγρ , where the averaging is 
taken over the motion period. For the channeled positron 
with the given mξ  we have   
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where 6
o 10052.162/ −⋅≅= cdωκ . In Fig. 2 (the continu-

ous line) the exact dependence of multipole parameter on 

WEPSB001 Proceedings of RuPAC-2010, Protvino, Russia

02 Synchrotron Light Sources and FELs

172



 

amplitude mξ  is shown. Thus, at the given potential both 
dipole and magnetic bremsstrahlung radiation types can 
be realized.  

The received frequencies correspond to nonlinear (not 
harmonic) oscillations. The closer mξ  to 1, the stronger 
difference of periodic motion from the harmonic one. 
Comparison at given mξ  of the exact numerical decision 
of the equation of motion with approximating harmonic 
oscillation           ( )τξξξ ⋅Ω= )(cos mm                           (3) 
with the same mξ  and frequency )( mξΩ  shows that prac-
tically in all range 980.00 m ≤≤ ξ   we can consider the 
motion of channeled positrons to be the harmonic one. In 
harmonic approximation (3) the expression for multipole 

parameter simplifies to    ( ) 2
mmm )()( ξξκγξρ Ω=   and is 

shown in Fig. 2 (dashed line). It is seen that the harmonic 
approximation of periodic motion of positrons with 
energy of 120=E  GeV is quite acceptable for calculation 
of the radiation spectrum of channeled particles. 

Fig.1: Dependence  )( mξΩ . 
 

Fig.2: Dependences )( mξρ . 
 

DISTRIBUTION OF CHANNELED PAR-
TICLES ON AMPLITUDES OF MOTION 

 
For determining the full spectrum of radiation from all 

captured in the channeling positrons it is necessary to 
know: N - a relative part of particles of the beam, cap-
tured into the channeling;  )( mξf  - density distribution of 
channeled positrons on amplitudes mξ . We suppose that 
at the entry to the straight crystal positrons are distributed 
uniformly along x , and hence along ξ , and with the 
angular distribution )(ϑg . In normalized variables ),( pξ  
according to (2) we have the following relation between 

ϑ  and p : 
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s  ,  where  

tcts ≅= sυ  is the longitudinal coordinate along the 
channel. From here the distribution of particles at the en-
try to the crystal on variable p  becomes )()(~ pgpg κκ= .  
Closed phase curve ),( mξξpp =  in the plane ),( ξp  with 
a fixed mξ  for a channeled particle (see Fig. 3) is given 

by expression      ))(~)(~(2),( mm ξξξξ UUp −±=           (4)  
with ],[ mm ξξξ −∈ . Separatrix is (the phase curve, sepa-
rating the channeled and over-barrier particles) described 

by expression )1,()(c ξξ pp = . The maximum value of Lp  
corresponds to the Lindhard angle Lϑ , achieved at 0=ξ  

and equal to )1(~2|)0(| cL Upp == . At the considered 
parameters of the crystal and the magnitude of the posi-
trons energy we have: 189.1L ≅p  and 6

L 10093.19 −×≅ϑ . 
Thus, the portion of particles captured in the channeling 
mode, i.e. moving inside the separatrix, is given by    
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Fig.3: Phase portrait of capture of particles in the 
channeling. 
 

Now we find the density function )( mξf  of particles 
distribution on the amplitudes only for the particles 
occurring in channeling. Hereinafter we mean ),( mξξp  to 
be a positive branch of the definition (4). The relative 
number of channeled particles N  with amplitude mξ≤  is 

equal to                 ∫∫=
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Then for the density function is determined as  
mmm /)()( ξξξ ddFf ≡   i.e.  
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We confine ourselves to the simplest case of uniform and 
symmetric about zero angle distribution of particles, i.e. 

o2/1)( ϑϑ =g  if  ],[ oo ϑϑϑ −∈ , 0)( =ϑg   if  ],[ oo ϑϑϑ −∉ . 
Hence, in the plane of normalized variables we have  

η2/1)(~ =pg  if ],[ ηη−∈p   and  0)(~ =pg  if  ],[ ηη−∉p , 
here κϑη /o=  is the boundary of the beam with variable 
p . For the case when the half-width of the angular spread 

is less than the Lindhard angle, Lo ϑϑ <  and, hence 

Lp<η  (see Fig. 3), we introduce the amplitude 1ξ , for 
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which the phase curve has a maximum ηξ =),0( 1p . In 
addition, for every phase curve with the amplitude 

1m1 ≤< ξξ  we determine the value 2ξ  which depends on 

mξ . Dependence )( m2 ξξ  is determined by 

ηξξ =− ))(~)(~(2 2m UU .  
According to the formulas (5÷7) for our case of the 
angular spread in the beam of positrons, we get:   
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Calculated by these expressions dependence of the 
relative capture N  in the channeling regime on the value 

oϑ  is shown in Fig. 4 and density functions )( mξf  for 
some values  rad/o μϑ    are shown in Fig. 5.  

 
Fig.4:  Function 

)/( rado μϑN . 
Fig.5:  Functions  

        )( mξf  
From the above analysis it follows the further impor-

tant conclusion: in the potential (1), where 0/~
→ξdUd  at 

1±→ξ  the distribution 0)( m →ξf  at 1m →ξ .  
 
THE RADIATION OF CHANNELED POSI-

TRONS IN QUASIPERIODIC MOTION 
To find the radiation spectrum of channeled positrons, 

oscillating in the interplanar potential (1), use the formula 
derived in [1] (p.303) for the quasiperiodic motion of a 
particle at all values of ρ . The need to consider the 
radiation spectrum in such a very general way is due to 
the fact that in the potential (1) multipole parameter (see 
Fig. 2) covers a wide range of values ρ  providing 
different types of radiation. The radiation spectrum of one 
positron per unit length of a short crystal is determined by 
the expression:  
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where: 04.137/1=α , γE   - the energy of the emitted pho-
ton, step function 1)( =Φ y  at 0≥y  and 0=  at 0<y ,  

oJ  is the Bessel function, c/))(()( xx ><−= υϕυγϕμ  , 

)()(2/),( 2
m γγγ EEEEE −= ωγξζ h , )( mo ξωω Ω⋅= ,  

)(2/1)( 2
γγ EEEEEA −+= γ .    

The motion of a positron is presented in the form of a 
harmonic oscillation (3) with the frequency depending on 
its amplitude mξ . For such an approximation the spectral 

dependency )( /2 dsγdEEd  on γE  was calculated by the 
previous formula and shown in Fig. 6 for a single 
channeled positron with the following values of =mξ   
0.3, 0.5, 0.7, 0.9.  

 
Fig.6: Dependencies cmdsdEEd γ ×)/( 2  on γE /GeV. 

 
CONCLUSION 

With the help of above consideration the photon spe-
ctra were calculated for the positron energy in the range 
of 80-120 GeV for (011) and (111) silicon planes. These 
spectra were inserted into the Monte Carlo program which 
was used for simulations of differential radiation energy 
losses of 120 GeV positrons at the INSURAD experiment 
conditions. The experiment was performed with usage of 
bent monocrystals with thickness of 1-2 mm. Simple esti-
mations show: influence of crystal bending on a photon 
emission process is negligible at radii more than 4 m; the 
mean number of photons emitted by one positron in such 
thickness is more than 1 several times. Comparison bet-
ween the energy losses measured in experiment and re-
sults of Monte Carlo simulations have shown good coinci-
dence them [6]. 
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