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Abstract
A nonlinear self-consistent theory of excitation of an 

axially asymmetric wakefield by relativistic electron 
bunches in cylindrical dielectric resonator with a vacuum 
channel for the charged particles transportation through 
the resonator is constructed. The formulated nonlinear 
theory allows investigating numerically the nonlinear 
effects such as increasing of the transverse bunch size, 
and head-tail beam breakup instability, which occurs if an
electron bunch in the structure is misaligned.

INTRODUCTION
The dielectric wakefield accelerator is one of the 

modern trends of acceleration schemes, which can 
provide high-accelerating gradient for future colliders. 
But besides for high output energy of an accelerated
bunches high demands are made on their quality, the 
same, for example, as low emittance. No loss of current
under acceleration of the bunch are also desirable.  This
information about the bunch can not be obtained using
assumption of the absence of reverse influence the excited 
field on the dynamics of electron bunches. In this paper 
we present nonlinear self-consistent theory of wakefield 
excitation in a dielectric lined resonator by an electron 
bunches. The previous theoretical investigations on 
wakefield excitation in dielectric lined structures, have 
been done for longitudinally unbounded structures [1]
[4]. In cited papers was noted, that it is necessary to 
taking into account the contribution of higher multipole 
modes to the total transverse field. A presented complete 
bunch excited electromagnetic field includes all 
azimuthal modes, which allows calculating transverse 
wakefield in order to investigate bunch deflection 
problems.

STATEMENT OF THE PROBLEM
Consider cylindrical metallic resonator with inner 

radius b , partially filled with isotropic material with 
dielectric constant , containing on-axis vacuum channel
of radius a which allows charged particles to pass 
through. We suppose that the end walls of the resonator 
are closed by metal grids transparent for charged particles 
and nontransparent for an excited electromagnetic field.
Consider an electron bunch, injected into the resonator 

and moving along a line parallel to the axis of the 
resonator.

The electron bunches will be described in terms of 
macroparticles, therefore the charge density and the 
current density j will be written as:

( ) , ( ) ( ) ,
R R

p p p p p
p V p V

q t q t tr r j v r r (1)

where pq is the charge of the macroparticle, pr and pv
are its time-dependent coordinates and velocity,
respectively. The summation in Eq. (1) is carried out over 
the particles being in the resonator volume RV .

FIELD SOLUTION
We introduce the solenoidal tE tH and the potential 
lE fields defined as

div( ) 0, div( ) 0, 0,rott t lE H E (2)

which are given by equations:

4, ,rot rot
c t c t c

tt
t tH EE H j (3)

( (4)

The solenoidal tE and potential lE electric fields are 
mutually orthogonal [5] and satisfy the boundary 
conditions, making their tangential components vanish on 
the metal walls of the resonator.

First we solve the equation (4) for the potential in the 
vacuum channel and dielectric. In cylindrical coordinate 
Eq.(4) rewrites as:

2 2

2 2 2

1 1 4+ +r
r r r r z

(5)

Eq.(5) should be complemented by boundary 
conditions consisting in that the potential on the 
resonator metal walls becomes zero

( 0) ( ) ( ) 0,z z L r b (6)___________________________________________
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and continuity of the potential and radial component 
electric induction vector 

0 0.

( 0) ( 0),
r a r a

r a r a
r r

(7) 

By using the expansion by eigenfunctions method Eq. 
(5), with boundary conditions (6) and (7), can be solved. 
Finally, we obtain the potential in the form 

 

22 2
0 1 1

4 ( )sin( , )

( )cos sin .
R

m mn l

m n l l mn mn

p mn p p l p
p V

R r k zt
L k R

q R r m k z

r
   (8) 

In the above (and below in paper) n , m , and l  
enumerate, respectively, radial, azimuthally and 
longitudinal indexes. Radial eigenfunctions ( )mnR r  and 
their norm have the form: 
 

J ( ), 0
( )

J ( )Z ( ) / Z ( ),
m mn

mn
m mn m mn m mn

r r a
R r

a r a a r b
   (9) 

 
2 2

2 2
2 2

2 2 2

2 2 2 2

1
1 J ( )

2

J ( ) 2 1 1J ( ) 1 ,
Z ( ) Y ( ) 2

mn m mn
mn

m mn
m mn

m mn mn m mn

a mR a
a

a a a
a a

      (10) 
 
where Z ( ) J ( ) J ( )Y ( ) / Y ( )m m m m mr r b r b , Jm  
and Ym  are , respectively, Bessel function and Neumann 
function of order m ; / , ( 0,1,...)lk l L l  are the 
longitudinal eigenvalues; 0 01, 2m m . Radial 
eigenvalues mn  satisfies the equation 
 

J ( )Z ( ) Z ( )J ( ),m m m ma a a a   (11) 
 

and can be found numerically. 
The solenoidal parts of the electromagnetic field can be 

determined by expanding the required fields into 
solenoidal fields of the empty dielectric resonator [5]. Let 
us write down the fields tE  and tH  in the form: 

 
( ) , ( ) .s s s s

s s
A t i B tt tE E r H H r  (12) 

 
The functions sE and sH , which describe the spatial 

structure of solenoidal fields, satisfy the Maxwell 
sources-free equations. 

By using the orthonormality conditions of eigenwaves 
 

* *
' ' '4

R R

s s s s s ss
V V

dV dV NE E H H  (13) 

 

one can obtain the differential equations for calculation 
the expansion coefficients ( )sA t  and ( )sB t  

2 2
2 2

2 2, ,s s s
s s s s s s

d A dR d BA B R
dt dt dt

(14) 

where *1 ( ) [ ( )].
R

s p p s p
p Vs

R q t t
N

v E r  

Eigenfields, which satisfy the source free Maxwell 
equations and electromagnetic boundary conditions can 
be written as: 

 

, , , ,

, , , ,

, , , ,

( ) sin , ( ) cos ,

( ) sin , ( ) cos ,

( ) cos , ( ) sin ,

im im
r s r s l r s r s l

im im
s s l s s l

im im
z s z s l z s z s l

E e r e k z H h r e k z

E ie r e k z H ih r e k z

E e r e k z H h r e k z

 

      (15) 
Then function sR transforms to the expression 

,

, ,

, ,

,

1 ( )sin cos

( )sin sin ( )cos cos

( )sin sin ( )sin cos

( )cos sin .

R

s p pr r s p l p p
p Vs

p s p l p p pz z s p l p p

pr r s p l p p p s p l p p

pz z s p l p p

R q v e r k z m
N

v e r k z m v e r k z m

i v e r k z m v e r k z m

v e r k z m

 

      (16) 
The functions describing the transverse structure of the 

solenoidal fields have the form: 
,

, ,2 2

,
, ,2 2

,
, ,2 2

,
, ,2 2

( ) ,

( ) ,

( ) ,

( ) ,

z ss l
r s z s

l s s

z ss l
s z s

l s s

z ss l
r s z s

s l s

z ss l
s z s

s l s

dek kme r h
k k r k dr

dhk k me r i e
k k k r dr

dhk kmh r e
k k r k dr

dek k mh r i h
k k k r dr

 (17) 

 
where transverse structure of the axial components 

, ( )z se r  and , ( )z sh r , through which all others components 
can be expressed, defines as follows: 
 

m , m ,
,

m , m ,

m , m ,
,

m , m ,

J ( ) / J ( ),0
( )

Z ( ) / Z ( ),

J ( ) / J ( ), 0
( )

( ) / ( ), ,

v s v s
z s

d s d s

s v s v s
z s

s d s d s

k r k a r a
e r

k r k a a r b

C k r k a r a
h r

C k r k a a r b

 (18) 

where 
2

2 2
, ,

( 1)s l
s

v s d s s

k k mC
k k aD

, , ,

, , , ,

J ( ) ( )
J ( ) ( )

m v s m d ss s
s

v s m v s d s m d s

k a k ak kD
k k a k k a

, 

 
Eigenfrequencies s  are determined from the 

dispersion equation 
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2 2 2

2 2 2

J ( ) ( )1 1
J ( ) ( )

J ( ) Z ( ) 0,
J ( ) Z ( )

l m v m d

v d v m v d m d

m v m d

v m v d m d

k m k a k ak k
k k a k k a k k a

k a k ak k
k k a k k a

 (19) 

where /s sk c  are the wave numbers , 
2 2 2 2
, /v s s lk c k , 2 2 2 2

, /d s s lk c k  are the transverse 
wave numbers , respectively , in vacuum channel and in 
the dielectric; 
Z ( ) J ( ) J ( )Y ( ) / Y ( )m d m d m d m d m dk r k r k b k r k b , 

( ) J ( ) J ( )Y ( ) / Y ( ).m d m d m d m d m dk r k r k b k r k b  
 

Taking into account the expressions for the transverse 
structure of the solenoidal fields (17) and (18) we can 
write down the expressions for the norms sN : 

2
, 2 2 2

3 2
, , ,

22 2 2
,2

2 2 2
, , ,

2 2 2

22 2 2 2 2
, , , , ,

2 2
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J ( )
(1 ) 1

2 J ( )
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k k a k a
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k k k b k a k b
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2

,
2 2

, ,

2 2

22 2 2
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,
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, ,
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, ,
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1

2 Z ( )

12 ,

m d s

d s m d s

s

d s d s m d s m d s

m d s

d s m d s

s l s
d s v s
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a k a

k
k k Z k a k b

k aa m
k a k a

k k mC
k k  (20) 

 
For all of the components of the solenoidal electric and 

magnetic field the results are: 

,
0 1 1

,
0 1 0

,
0 1 0

( , ) ( )sin

(Re ( )cos Im ( )sin )

( , ) ( )sin

(Im ( )cos Re ( )sin )

( , ) ( )cos

(Re ( )cos Im ( )sin )

r m r s l
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s s

m s l
m n l

s s
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r

r

r

 (21) 

,
0 1 0
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0 1 0

,
0 1 1
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( , ) ( )cos

Re ( )cos Im ( )sin
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s s
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r

r
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 (22) 

The self-consistent dynamics of bunch particles is 
described by relativistic equations of motion in the 
electromagnetic fields excited by bunches: 

 
1 , ,p p p

p p
p p p p

d d
q

dt m c dt m
p r p

E p B  (23) 

 

where 
22 1 / .p p pm cp  

CONCLUSIONS 
In present work a system of self-consistent equations 

describing the dynamics of excitation both an azimutally 
uniform and nonuniform modes of wakefield, excited by 
relativistic electron bunches in a dielectric resonator, are 
obtained. 

An bunch excited fields are presented in the form of 
superposition solenoidal and potential fields. The 
solenoidal electromagnetic fields are presented by an 
expansion of the required fields into solenoidal fields of 
the empty dielectric resonator. The potential field is 
presented by the eigenfunction expansion method. The 
dispersion equation for determination of eigenfrequencies 
and the equation for eigenvalues are obtained, 
eigenwaves, eigenfunctions and their norms are found. 

The analytical expressions of an excited fields, that take 
into account both longitudinal and transverse dynamics of 
bunch particles are derived. 

Along with the equations of motion they provide a self-
consistent description of the dynamics of generated fields 
and bunches. 
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