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Abstract 
Self-coordinated transverse dynamics of the high 

current relativistic electronic bunches used for generation 
of wake fields in wakefield accelerating structures with 
dielectric filling is investigated. An analytical approach to 
solution of self-coordinated beam dynamics is developed. 

 

INTRODUCTION 
 
Wakefield acceleration in a dielectric wakefield 

waveguide structures is one of the most intensively 
developed direction among new methods of particle 
acceleration. Linear accelerators are considered also as 
sources of sequence of electronic bunches for the free 
electron laser, which is considered now the major 
candidate for creation of ultra short impulses (of 
attosecond range) X-ray radiation. Waveguide structures 
with dielectric filling excited by a high current electronic 
bunch were investigated intensively for the last years [1] 

 [5]. The main purpose is of prospects of their use as 
high gradient linear accelerators. 

One of the main problems in realization of the 
wakefield method is keeping of an intensive electronic 
bunch in the channel of a wave guide and prevention of 
subsidence of particles on its wall. In this regard, a key 
task in the wakefield method of acceleration is modeling 
of the self-coordinated movement of a relativistic 
electronic bunch passing through dielectric structure in 
fields of Vavilov-Cherenkov created by it. 

In recent years in tasks of the analysis of self-
coordinated dynamics of relativistic electronic bunches in 
wakefield accelerating structures methods of direct 
numerical modeling where developed. These methods are 

  These methods 
allow on the set parameters of accelerating structure and 
an initial condition of a bunch to simulate process of its 
movement. The results of calculations are determination 
of flight range of the bunch to a contact to them 
accelerating structure walls, emittance of the bunch, and 
also transferred or received by bunch energy of particles.  

Shortcomings of these methods are considerable 
duration of calculations for ensuring accuracy of 
calculations, insistence to volume of random access 
memory and productivity of computer system. Let us note 
also that at change of parameters of the bunch and of 

accelerating structure complete recalculation of a problem 
of the bunch movement is necessary.   

  For design of accelerating structures, solutions of 
problems of optimization in which the structure and 
bunch parameters maximizing efficiency of accelerating 
process are determined are necessary. The solution of 
similar tasks based on direct numerical modeling of 
dynamics demands repeated carrying out numerical 
calculations. Creation of the analytical description of self-
coordinated dynamics of the bunch allowing direct 
parametrical research of process in this regard is of 
interest. 

BEAM DYNAMICS EQUATIONS 
 
The description of movement of the electronic bunch 

was carried out on the basis of the equations of relativistic 
dynamics [3]: 

r e rF d m V dt , 
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, ,
,

0 , 0 , 0 0
0

( , )

( )sin ( ( , )) ,

r n mr focus F n r n m
n m

z n m n r n m

F F eq I k r t

f k I k r t d
 

( , )r t  is a bunch deflection from waveguide axes, 
z tv  is a distance behind the bunch, fF  is a 

focusing force, e  and em  are charge and mass of 
electron, q  and  are charge and relativistic factor of the 
bunch, ,z i jk  and ,r i jk  are longitudinal and radial 

components of wave vector, 
,z i jE  and 

,r i jF are 

coefficients of series, depending of geometry and wave 
guide filling permittivity, 0( )f  is a function describing 
longitudinal charge distribution, ( )nI x  are modified 
Bessel function of n-th order.  

The task of the description of macroparticle movement 
is self-coordinated: the mutual provision of particles in 
ensemble influences a field created by particles which, in 
turn, leads to change of their position. Let's consider an 
analytical method of the solution of the integro-
differential equation of self-coordinated dynamics at the 
following simplifying assumptions: 

1. Let's consider that the charge of the bunch is 
distributed evenly in the longitudinal direction, thus 

0( ) 1f l , where l  is a length of the bunch.  
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2. Let's neglect change of size of a relativistic factor 
over time 0( )t . 

In considered case , ( , ) 1r i jk r t , in rejecting field at 
small deviations of the bunch from the wave guide axis 
the overwhelming contribution is brought by the 1st 
azimuthal mode 1i . Nonlinear component of a force is 
negligible. Thus, it is possible to consider that the force 
operating on charges in the radial direction, depends on r 

linearly 1( )  2I kr kr , 1 ( ) 1 2I kr .     
In case the contribution of one of modes is 

overwhelming, and the others can be neglected, the 
equation essentially becomes simpler:  
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To reduction of the received integro-differential 
equation to the integrated equation we will apply 
Laplace's transformation on time. The received integrated 
equation has the known decision received on the basis of 
transformation of Laplace on longitudinal coordinate. 

Expressing the image of required function, and finding 
the original Laplace's return transformation by image 
decomposition in a Laurent series, we receive for lack of 
focusing force 0fF  : 

0 0

2 1

2 2

0 0
0

0

( , )

1
2 2 2 !

2 2 !

2 2 3

r

n mm
zn n

z

n m
r

r t r v t

t B kn
k m n m

n v t
r

n m

, 

 

 
Figure 1: Characteristic dependences ( )r  for the 
different moments of time. 
 

 
Figure 2: Radial bunch charge distribution for constant 

initial deflection of the bunch.  

In Fig. 1, 2 for the purpose of an illustration of the 
received decision if 20 1 26.365 10B , 

1260zk , 0 0.01r , dependences ( )r  for the 
different moments of time and ( )r t  for the various  are 
given. A head  tail instability leads to growing deflection 
of the backward part of the bunch. 

Comparison of the received analytical expression was 
carried out with numerical modeling of bunch dynamics 
by a method of macroparticles based on the 
BeamDynamics program. Comparative calculations were 
made at the following parameters of a waveguide and a 
bunch:  0.5 cmcR , 0.634 cmwR ,  1 16 ,  

16 MeVW ,  100 nCQ ,  6 1.2 cml ,  

0 0.01 cmr ,  0 0v .  
The BeamDynamics program realizes modeling of 

Gaussian distribution of the bunch charge [3]. The bunch 
with the Gaussian profile of charge distribution 
exponentially suppresses excitation of high modes of the 
waveguide that allows its comparison to analytical 
calculation of dynamics of a homogeneous bunch taking 
into account only one main mode. Program finishing was 
made after a contact by the bunch of a wall of the vacuum 
channel. Results of comparison are presented on Fig 3. 
The dotted line shows radius of the channel of 
accelerating structure. Thus range of flight of the bunch to 
a contact of the waveguide wall in analytical and 
numerical calculations practically coincided and made 

86 cmL . 
As the charge of a Gaussian bunch is concentrated near 

its center, influence of radial forces created by it near the 
head of the bunch is expressed weaker, than in case of the 
homogeneous bunch. At the same time on a tail of the 
Gaussian bunch influence of radial forces is expressed 
stronger. 
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Figure 3: Comparison of analytical dependence to 
numerical calculation by a method of macroparticles. 

BEAM DYNAMICS WITH FOCUSING 
Significant amplitude of own rejecting fields generated 

by high current bunch affecting his tail, emphasizes 
focusing system necessity. To keep the high current beam 
is appropriate to use a rigid focusing system based on 
FODO focusing [4, 5].  

The period of the radial force of the focusing system 
can be approximated by the harmonic dependence for 
taking part a potential sagging  between quadruple 
lenses: 

0( ) 2( ) cos
2f

w s

BB z zF k z r ec r ecr
r R L

. 

Such dependence may be written as   
1 0( , ) cos ( )f eF g r t m tv , 

To simplify the beam dynamics equation let us consider 
that restoring force is linear increasing with deflection 
from waveguide axis without alternating sign component. 

0 0( , )f eF g r t m , 

where 0 1 4g g .  
Solving such integro-differential equation by Laplace 

transform method, we receive: 
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Characteristic dependences ( )r  for the different 
distances of bunch flight with focuser were presented on 
Fig. 4.  
 
 

 
Figure 4: Characteristic dependences ( )r  for the 
different distances of bunch flight with focuser. 

It is visible that the bunch flight range significantly 
increases under the influence of the focuser. 

CONCLUSION 
Offered methods of analytical calculation of self-

coordinated dynamics of bunches in wakefield 
accelerating structures open prospects for development of 
solving new optimization tasks of accelerators for physics 
of high energy and perspective sources of radiation in 
THz range of frequencies.  
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