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Abstract
The transient beam response to an externally applied im-

pulse force in synchrotrons with a digital transverse feed-
back system is studied. Experimental data from the LHC
on damping of coherent transverse oscillations excited by
the discrete-time unit impulse are analysed. Good agree-
ment on the measured and theoretically predicted decre-
ments has been obtained. A method of feedback fine tun-
ing, based on measurements of the bunch response to the
harmonic excitation impulse, is discussed.

INTRODUCTION
Transverse feedback systems (TFS) in synchrotrons (see

Fig. 1) are used for damping coherent transverse oscilla-
tions caused by injection errors and for suppression of co-
herent transverse instabilities [1]. The transverse momen-
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Figure 1: TFS Layout

tum of a bunch is corrected by the damper kicker (DK) in
proportion to the bunch displacement from the reference
orbit at the location of the beam position monitor (BPM).
The digital signal processor (DSP) module allows to obtain
optimum damping by adjustment of the TFS parameters in
agreement with the beam time of flight from BPM to DK
and the corresponding betatron phase advance.

Coherent oscillations can be originated by DK or a spe-
cialised driving kicker K (see Fig. 1). For example, the
kicker can be fed with the discrete-time unit impulse or the
harmonic excitation impulse. The beam response observed
by BPM in this case can be used for tuning the TFS.

The transient beam response to a driving force is an-
alyzed below in framework of the discrete transforma-
tion approach developed in [2, 3] for describing transverse
beam dynamics in synchrotrons with a digital TFS.

BASIC NOTIONS
Let the column matrix X̂[n, s] describe the bunch state

at the n–th turn and in point s on the reference orbit (see
Fig. 1). Its first element x[n, s] is the bunch deviation from
the orbit and the second one x′[n, s] is the angle of the
bunch trajectory. Let the driving kicker K located in point
sD change the angle of the bunch trajectory on Δx′D[n]. For

the bunch states at two consecutive turns after passing the
damper kicker DK located in point sK one can write [2, 3]:

X̂[n+ 1, s] ≡ X̂ [n, s+ C] = M̂(s)X̂ [n, s]

+ Δx′[n, sK] M̂KÊ +Δx′D[n] M̂DÊ , (1)

where C is the circumference of the reference orbit; ele-
ments E1 = 0 and E2 = 1 in the column matrix Ê. Here
2×2 matrix M̂(s2|s1) for passage from s1 to s2 is used [4]
so that: M̂(s) ≡ M̂(s + C|s), M̂K ≡ M̂(s + C|sK),
M̂D ≡ M̂(s+ C|sD).
Δx′[n, sK] is proportional to output voltage Vout on the

amplifier in a feedback chain and linearly depends on input
voltage Vin:

Δx′[n, sK] =SK Vout[n] = SK Kout Kin×

×

NF∑
m=0

h[m]Vin[n− q̂ −m]u[n− q̂ −m] , (2)

where SK is the DK transfer characteristic; Kin and Kout

are voltage gains of the output and input amplifiers (see
Fig. 1); u[n] is the Heaviside step function; h[m] are co-
efficients of a finite impulse response (FIR) digital filter in
DSP; NF is the FIR filter order. The total delay τdelay in the
signal processing of the feedback path from BPM to DK
adjusts the timing of the signal to match the bunch arrival
time. If τPK is the time of flight of the particle from BPM
to DK and Trev = 1/frev is the particle revolution period,
then τdelay = τPK + q̂ Trev.
Vin voltage linearly depends on x[n, sP] displacement:

Vin[n] = (x[n, sP] + δxP)SP u[n] , (3)

where δxP is a deviation of the BPM electrical centre from
the reference orbit, SP is the BPM transfer characteristic.

Let the driving force be the discrete-time unit impulse
with amplitude aD at the nD turn so that

Δx′D[n]

√
β̂Dβ̂P ≡ VD = aD δ[n− nD] , (4)

where β̂i ≡ β̂(si) is the Twiss beta function [4]. In
the case of harmonic excitation impulse of QDfrev fre-
quency,NDTrev duration and φD phase one can write: VD =
aD sin

(
2π(n−nD)QD +φD

) (
u[n−nD]−u[n−nD −ND]

)
.

The system of linear difference equations (1), (2), (3)
and (4) can be solved using unilateral Z–transform [6]:

y(z, s) =Z{y[n, s]} ≡
∞∑

n=0

y[n, s] z−n , (5)

y[n, s] =Z−1{y(z, s)} =
∑
k

Res
[
y(z, s) zn−1; zk

]
.
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For X̂(z, s) = Z{X̂[n, s]} one can obtain the following:

X̂(z, s) =
zÎ − M̂−1 det M̂

det
(
zÎ − M̂

) (
Z{Δx′D[n]} M̂DÊ +

+ zX̂[0, s] +
g z−q̂ K(z) δxP

(1 − z−1)(β̂Kβ̂P)1/2K0

M̂KÊ

)
, (6)

where Î is the identity matrix; K(z) = KoutH(z)Kin

is the transfer function of the feedback circuit; H(z) =

Z{h[n]}; g = (β̂Kβ̂P)
1/2 K0SKSP is the feedback gain

where K0 is determined in such a way (see further) that
g > 0 corresponds to damped oscillations. Matrix M̂ is

M̂ ≡ M̂(z, s) = M̂(s) +
g z−q̂ K(z)

(β̂Kβ̂P)1/2 K0

M̂K T̂ M̂(sP|s),

where T̂ is 2 × 2 matrix in which T21 = 1 and other el-
ements are equal to zero. Eigenvalues zk at aD = 0 are

solutions of equation det
(
zÎ − M̂(z, s)

)
= 0, that is:

z2k −

(
2 cos(2πQ) +

g z−q̂
k K(zk)

K0
sin(2πQ− ψPK)

)
zk

+1−
g z−q̂

k K(zk)

K0
sinψPK = 0, (7)

where Q is the betatron number of oscillations per turn
and ψPK is the betatron phase advance from BPM to DK.
If g = 0 then z1,2 = exp(±j 2πQ), that is a well known
result for free betatron oscillations. If g �= 0 then the num-
ber k > 2 of eigenvalues zk depends on NF and q̂. The
bunch state X̂[n, s] = M̂(s|sK)X̂[n, sK] can be calculated
from components X̂[n, sK] after passing DK in accordance
with (5) as the sum of harmonics with Akβ̂

1/2 amplitudes,
Φk phases, αk ≡ − ln |zk| logarithmic decrements and
2π{Qk} ≡ arg zk phase shifts per turn so that

x[n, sK] =
∑
k

Ak

√
β̂K e

−nαk+j (2πn{Qk}+Φk) .

It can be done if |zk| < 1 and

lim
n→∞

X̂[n, s] = lim
z→1

(z − 1) X̂(z, s) = 0.

Consequently K(z = 1) = 0. Thus, all poles zk of func-
tion X̂(z, s) should lie inside the unit circle, and influence
of δxP in X̂(z, s) function should be excluded. The later
condition is reached by using the feedback circuit with the
notch filter whose transfer function is HNF(z) = (1− z−1).

If g � 1 and Kin(ω)Kout(ω) depends weakly on fre-
quency then from (7) one can obtain the following:

αm =
g |K(ωm)|

2K0
sinΨPK , (8)

{Qm} = {Q} −
g |K(ωm)|

4πK0
cosΨPK ,

ΨPK = ψPK + 2πq̂ Q− argK(ωm) ,

K(ωm) = Kin(ωm)Kout(ωm)H
(
z = e j 2πQ

)
,

|K0| = |K(ωmin)|, K0 sinΨPK(ωmin) > 0,

where ωm = 2π(Q+m)frev andm is a positive or negative
integer. For the fractional tune {Q} the following definition
is used: −0.5 < {Q} � 0.5. The |K0| value is equal to
the gain transfer characteristic of the feedback circuit at the
minimal frequency of ωm. The sign of K0 is chosen in such
a way that g > 0 corresponds to the damped oscillations.

The optimum damping corresponds to phase balanceΨPK

of | sinΨPK| = 1, so that {Qm} = {Q}.
Hence, it is necessary to tune the TFS in such a way

to provide two conditions: the BPM signal should corre-
spond to the decay amplitude mode and zero frequency
shift ({Qm} − {Q})frev should be tuned for optimum
damping.

BEAM RESPONSE TO DRIVING FORCE
From Eq. (6) for X̂(z, s) it is clear that the bunch state

X̂ [n, s] in accordance with Eqs. (5) depends on initial con-
ditions X̂[0, s], the deviation δxP of the BPM electrical cen-
tre from the reference orbit and the driving force. In the
case of damped oscillations after some time the bunch state
is determined by the driving force only.

If the driving force is the δ[n−nD] function then X̂(z, s)

includes the term Z{Δx′D[n]} = aD z
−nD/(β̂Pβ̂K)

1/2 that
leads to damped oscillations starting at the moment nDTrev
with decrements and frequencies in accordance with zk
from the characteristic equation (7). Fig. 2 (left) shows
an example of the beam response signal at BPM in the
case of two δ-kicks at different gains g. Calculations were
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Figure 2: Beam response signal (solid blue lines) and its
envelope (dashed red lines) on two δ-kicks (left), harmonic
impulse (right) and damped injection oscillations at t = 0

done according to (1), (2), (3) and (4) at optimum damp-
ing, x[0, sP] = a0, x′[0, sP] = 0, δxP = a0, Q = 59.31,
ψPK = 2π × 59.25, ψPD = 2π × 58.30, aD = 2a0, q̂ = 0,
K0 = 1.576,H(z) = (1− z−1)(1 + 0.576z−1); the Twiss
functions in M̂(s2|s1) are β̂P = β̂K = β̂D = 71.538 m,
α̂P = α̂K = α̂D = 0. The corresponding dependences of
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Figure 3: Dependences of |zk| and {Qk} on gain g

|zk| and {Qk} on gain g are shown in Fig. 3. There are four
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solutions of the characteristic equation (7) because ofH(z)
chosen. Two solutions (solid lines) correspond to eigenval-
ues z1,2 with frequencies |{Q1,2}|frev close to |{Q}|frev
at g < 0.3. Eigenvalues z3,4 (dotted lines) correspond to
fast damped modes at g < 0.3.

The rf-signal at nD = 200 in Fig. 2 (left) corresponds
to g = 0.08. In this case the decrement value from (7) is
αmin = − ln |z

(max)
k | = Trev/τ = 0.0429. Consequently

the amplitude decay is faster in comparison with the linear
approximation g/2 in (8). The rf-signal at nD = 500 corre-
sponds to g = 0.02. The decrement αmin = 0.01 from (7)
is in a good agreement with the linear approximation (8).

The BPM signal in the case of the harmonic impulse
in TFS with gain g = 0.08 is shown in Fig. 2 (right) at
QD = 0.315, aD = a0, nD = 200 and ND = 300. It is
visible that in 100 turns after the excitation start the vibra-
tion amplitude approximately by 12 times more than aD is
achieved. The amplitude of the forced oscillation also in-
creases at QD → {Q}, but it is not converted in infinity as
it occurs at a resonance without damping.

Function a(n,QD) of two variables n and QD can be
presented on a plane in the form of a graph of isoampli-
tudes. Each line is characterized by constant amplitude in
any point. For example, for isoamplitudes one can choose:

a(n,QD) = ai, −0.01 < {QD} − {Q} < 0.01, (9)

ai = amax

√
i/10, i ∈ [0, 10),

where amax(Q
(max)
D ) is the peak amplitude of steady state

oscillations in the specified frequency range (Fig. 4, left).
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Figure 4: Graph of isoamplitudes (left) and resonance
curve (right)

When the bunch makes forced oscillations, its trans-
verse energy I(QD) on the average remains invariable in
the field of steady state oscillations: on each turn after the
driving kicker the bunch gains an additional transverse im-
pulse which is compensated by the damper kicker. Quan-
tity I(QD) is proportional to a quadrate of the amplitude
of steady state oscillations. Consequently for a resonance
curve (see Fig. 4, right) one can write in accordance with
(6) and (5):

I(QD)

Imax
=

1

Imax

∣∣∣det(zDÎ − M̂(zD)
)∣∣∣−2

, (10)

zD = exp(j 2π{QD}), Imax = I
(
Q

(max)
D

)
.

In g � 1 then I(QD)/Imax in accordance with Eqs. (8) is

I(QD)

Imax
=

α2
m

4π2({QD} − {Qm})2 + α2
m

.

This function coincides with a resonance curve which is
used for the analysis of forced oscillations in the presence
of friction. The function I(QD)/Imax has a maximum at

{Q
(max)
D } = {Qm} = {Q} −

g |K(ωm)|

4πK0
cosΨPK .

Thus, the resonance curve maximum is shifted relatively
the betatron frequency under violation of the phase balance
condition | sinΨPK| = 1.

CONCLUSION
The beam tests based on measurements of a bunch re-

sponse to the δ-impulse were used at the LHC for tuning
the LHC Damper [1] at injection and collision [7]. Good
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Figure 5: Calculated decrements (curves) and results of
measurements for vertical (left) and horizontal (right) feed-
back chains of the LHC Damper at the energy of 3.5 TeV

agreement on the measured and calculated decrements has
been obtained (see, for example, Fig. 5).

Analytical expressions have been obtained for the bunch
response to the harmonic excitation impulse taking into ac-
count real performances of a TFS. The dependences based
on the resonance curve can be used for thin adjustment of
the TFS and selective measurements of circulated bunches.
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