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Abstract

Charge particle beams transportation with small cross-
sections and low energies is an actual problem for a gantry.
That beams are used actively for isotope therapy. Beam
emittance is its quality factor, and it should be matched
with a facility channel acceptance. The method for beam
dynamics analysis in lattice is developed in terms of non-
coherent particle oscillation study. Nonlinear beam dynam-
ics is investigated by using this method. It is shown that
this technique allows one to realize effective beam emit-
tance control. Analytical results obtained are verified by
means of numerical simulation.

INTRODUCTION

One of the most interesting problems of accelerator en-
gineering to date are the design and development of high-
performance high-current compact systems for an injection
and acceleration of low-velocity heavy-ion beams. This
problem as well as others cannot be solved without taking
into account problem solution on beam emittance match-
ing with an acceptance of an accelerator channel. Effective
acceptance evaluation for the resonance accelerator chan-
nel depends on a mathematical model used for describing a
beam dynamics. Effective acceptance evaluation of the res-
onance accelerator channel was performed previously on
basis of charged particle beam oscillation as a whole [1] –
[4], that is under the assumption of coherent oscillations of
individual particles. It is of particular interest to consider a
model, which is taking into account non-coherent particle
oscillations in the beam, and analyse results based on it.

BEAM DYNAMICS

It is difficult to analyse a beam dynamics in a high fre-
quency polyharmonic field. Therefore, we will use one of
methods of an averaging over a rapid oscillations period,
following the formalism presented in [1] – [4]. One first
expresses RF field in an axisymmetric periodic resonant
structure as Fouriers representation by spatial harmonics
of a standing wave assuming that the structure period is a
slowly varying function of a longitudinal coordinate z

Ez =
∞∑

n=0

EnI0 (knr) cos
(∫

kn dz

)
cosωt,

Er =
∞∑

n=0

EnI1 (knr) sin
(∫

kn dz

)
cosωt,
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where En is the nth harmonic am-
plitude of RF field on the axis;
kn = (1 + 2n)π/D is the propagation wave number
for the nth RF field spatial harmonic; D is the resonant
structure geometric period; ω is the RF frequency; I0,
I1 are modified Bessel functions of the first kind.

As it was stated above, we will take into account non-
coherent particle oscillations in the beam being accelerated.
To this end, one introduces a notion of a reference particle,
i.e. a particle moving on the channel axis. A magnetic force
can be neglected for low-energy ions. We will assume that
dr/dz � 1. Then, one passes into the reference particle
rest frame. There is a differentiation over longitudinal co-
ordinate in the beam motion equation. Thus, the motion
equation together with an equation of particle phase varia-
tion can be presented in a view of a system of the first order
differential equations as follows

⎧
⎪⎪⎨

⎪⎪⎩

dΓ
dξ

= ez(ξ, 0, τ∗) − ez(ξ, ρ, τ),

dβr
dξ

= β−1
z er(ξ, ρ, τ).

(1)

Here we introduced the following dimensionless vari-
ables: Γ = γ∗ − γ; γ∗ and γ are the Lorentzs factors
for the reference and given particles respectively; ξ =
2πz/λ is dimensionless longitudinal coordinate; ez,r =
eEz,rZλ/2πm0c

2; e is the elementary charge; Z is a
charge state of an ion; λ is a wave length of RF field;m0 is
an ion rest mass; c is the light velocity in free space; βz,r is
normalized velocity component.

Let us introduce a new dynamical variable ψ = τ − τ∗

(τ = ωt, τ∗ is a normalized motion time of the reference
particle at the laboratory coordinate system). Note, that

dψ

dξ
= β−3

s Γ, (2)

βs is normalized synchronous particle velocity, s is the field
harmonic number.

Suppose that |βz − βs| � 1 one can obtain

d2ψ

dξ2
+ 3κ

dψ

dξ
=

1
β3
s

dΓ
dξ

(3)

upon differentiation of Eq. 2. The second equation of Eq. 1
can be rewritten as

d2δ

dξ2
+ κ

dδ

dξ
=
er
β3
s

, (4)

where δ = ρ/βs, ρ = 2πr/λ, κ = ln′
ξ βs.
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On averaging Eq. 3 and Eq. 4 over rapid oscillation pe-
riod one can present the motion equation in the smooth ap-
proximation with the restrictions mentioned above in the
following matrix form

Ϋ + ΛΥ̇ = −LΦef , (5)

where the dot above stands for differentiation with respect
to the independent longitudinal coordinate and

Υ =
(
ψ

δ

)
, Λ =

(
3κ 0

0 κ

)
, L =

( ∂
∂ψ
∂
∂δ

)
.

Now, ψ and δ mean its averaged values. Φef plays role
of an effective potential function (EPF) describing a beam
interaction with the polyharmonical field of the system sub-
ject to the incoherent particle oscillations.

For example, we consider there are two spatial harmon-
ics at the linac. One of it is the synchronous harmonic with
s = 0, and another one is the nonsynchronous (focusing)
with n = 1. In this case we have

Φef =
e0
2βs

[I0(δ) sin(ψ + ϕ∗) − ψ cosϕ∗ − sinϕ∗]

+
e20
64

[
I2
0 (δ) + I2

1 (δ) − 1
]

+
5e21
256

[
I2
0 (3δ) + I2

1 (3δ) − 1
]

− e20
32

[I0(δ) cosψ − 1] − 5e21
128

[I0(3δ) cosψ − 1]

− e0e1
32

{[I0(δ) + I0(3δ)]cos(ψ + 2ϕ∗) − 2 cos 2ϕ∗}

+
e0e1
32

{[I0(δ)I0(3δ) + I1(δ)I1(3δ)] cos 2(ψ + ϕ∗)

− cos 2ϕ∗} ,
where en = eEnZλ/2πβ2

sm0c
2.

To define eigenfrequencies of small system vibrations,
EPF is expanded in Maclaurins series

Φef =
1
2
Ω2

0ψψ
2 +

1
2
Ω2

0δδ
2 + o

(
ΥTΥ),

and the coefficients in which are given by

Ω2
0ψ = − e0

2βs
sinϕ∗ − e0e1

16
cos 2ϕ∗ +

e20
32

+
5e21
128

,

Ω2
0δ =

e0
4βs

sinϕ∗ +
3e0e1
64

cos 2ϕ∗ +
e20
128

+
45e21
512

.

NUMERICAL SIMULATION
The analytical results obtained above were used to in-

vestigate the beam matching possibility at the linac out-
put. The beam was the unbunched 2.5 keV/u lead ions
Pb25+ with charge-to-mass ratio is equal to 0.12. Self-
consistent beam dynamics simulations were conducted by
means of a modified version of the specialized computer
code BEAMDULAC-ARF3 based on CIC technique to cal-
culate beam self-space-charge field. Computer simulation

was carried out for the linac structure under the following
parameters: λ = 8.88 m, system length is equal to 2.5 m,
channel aperture is equal to 5 mm; input and output values
of the equilibrium particle phase are equal to −π/2 and
−π/6 respectively, synchronous harmonic maximal value
at the axis is equal to 16 kV/cm, e1/e0 = 9. The equi-
librium particle phase linearly increases at the bunching
length (1.75 m) and plateaus further. Note that the vari-
ation of the synchronous harmonic amplitude against lon-
gitudinal coordinate (at 1.75 m) was calculated by using
the technique described in [1]. Initial beam radius and cur-
rent were 1 mm and 5 μA respectively. This parameters
guarantee a positivity of the eigenfrequency of the small
transverse tunes and, therefore, provide beam matching at
the linac output. The output beam energy and current trans-
mission coefficient were 100 keV/u and 85% respectively.

4D beam phase volume projection onto (ψ, ψ̇) phase
plane together with phase paths calculated in keeping with
Eq. 5 at linac output is shown in Fig. 1. There are chan-
nel longitudinal acceptance in conservative approximation
(curve 1) as well as channel dynamical acceptance in Fig. 1
too.
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Figure 1: 4D beam phase volume projection and phase
paths.

The size of beam envelope and transmission are shown
in Fig. 2 and Fig. 3 respectively. The output beam radius is
nearly 1.5 times greater than the input one because of this
fact. This result is acceptable. It is clear that main linac
parameters choice based on proposed technique is rather
efficient to realize beam envelope (emittance) control.

SUMMARY

Beam dynamics model with regard for particles non-
coherent oscillations was made. Effective acceptance eval-
uation in terms of this model was evaluated. The necessary
restrictions on the linac parameters were imposed to make
beam matching at the output. The numerical simulations of
the self-consistent low-velocity heavy-ion beam dynamics
confirmed the analytical results obtained.
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Figure 2: Beam envelope.
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Figure 3: Current transmission.
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