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Abstract
The nonlinear resonance of third order plays an impor-

tant role in the particle dynamics in circular accelerators,
colliders and storage rings and is widely used for slow ex-
traction of particles from synchrotrons. Consideration is
carried out in the canonical variables X, Y which at a given
accelerator azimuth are simply related to the angle and the
deviation of the circulating particles relative to the equi-
librium orbit. The problem is reduced to the construction
of the phase trajectories, which are the curves of the third
or fourth order and determine the type of the motion near
the resonance under consideration. The construction of the
phase trajectories is performed by the Klein’s perturbation
method. The influence on the particles dynamics of oc-
tupole component of the magnetic fields is investigated.

INTRODUCTION
The problems of nonlinear dynamics play an impor-

tant role in different fields of modern physics such as ele-
mentary particle physics, nuclear physics, plasma physics,
quantum electronics and, certanly, in the particle acceler-
ators physics [1]. The nonlinear resonance excitation is
wiedly used for particle extraction from circular acceler-
ators [2], the nonlinear resonances action determines dy-
namical aperture of large circular accelerators and storage
rings. One of the most important problems in nonlinear
oscillations study is construction of the trajectories of rep-
resentive points on phase plane and stable motion regions
finding.

BASIC THEORETICAL STATEMEMTS
When considering a particle motion in a circular accel-

erators it is convenient to replace longitudinal coordinate s
by so called generalized azimuth φ

φ = 2π
s

R0
,

where R0 = Π/2π, and Π - accelerator perimeter.
The equation of one-dimensional particle motion in an

accelerator in the presence of a perturbation has the form

d2x

dφ2
+ ν2

xx = εF

(
φ, x,

dx

dφ

)
, (1)

where x is the transverse displacement of the circulating
particle with respect to the equilubrium orbit, νx is the be-
tatron oscillation frequency, ε is small positive parameter,
φ =

∫
ds

νxβ(s) , β(s) is the betatron function. The function

F
(
φ, x, dx

dφ

)
is periodic with respect to φ function with pe-

riod equal to 2π. Taking the smallness of the perturbation
into acount the solution of the equation (1) can represented
in the form, that it has for the homogeneous equation, but
now with the amplitude a and the phase ψ depending on
the azimuth φ [3].

x = a(φ) cos(νxφ+ ψ(φ)). (2)

The amplitude a and phaseψ are subjected to the following
equations

da

dφ
= A(a, ψ),

dψ

dφ
= Ψ(a, ψ). (3)

Canonical variables

For further analysis it is convenient to move to the new
variables X and Y [4]

X = a cosψ, Y = −a sinψ. (4)

At a given accelerator azimuth variables X , Y are con-
nected in a simple way with the angle and the displacement
of the circulating particle with respect to equilibrium orbit.
In these variables equations ( 3) take the canonical form

dX

dφ
=

∂H

∂Y
,

dY

dφ
= −∂H

∂X
, (5)

where H(X,Y ) is the Hamiltonian. Such change of the
variables and use of the Hamiltonian allow to make a de-
scriptive analysis of the particles motion on the phase plane
(X,Y ). Curves on which the particles move are deter-
mined by the equation H(X,Y ) = const. From the con-
ditions

dX

dφ
=

∂H

∂Y
= 0,

dY

dφ
= −∂H

∂X
= 0, (6)

the postions of the specific points on the phase plane are
determined.
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Resonance terms In a special case the nonlinear field
F appearing in the equation (1) can be represented in the
following way

F = xl cos(mφ), (7)

l, m – integer. The substitution of (2), (7) in equation (1)
and subbsequent expansion of the function F into a Fourie
series causes resonance terms appearance. Resonance con-
dition takes the form

νx =
m

l + 1
. (8)

THIRD ORDER RESONANCE
The third order resonance ν = q/3 is exited by a suitable

q harmonic of the quadratic (sextupole l = 2) magnetic
field F (ϕ, x, dx/dϕ) = −A2x

2 cos qϕ − Bx3. Here the
constant component of qubic (octupole l = 3) magnetic
field B playing an important role in circular accelerators is
keeping.

In this case the Hamiltonian can be represented in a nor-
mal form [5] and can be written as [4].

H =
A2

16
(Y 3 − 3X2Y ) +

1
2

(
νx − q

3

)
(X2 + Y 2) +

B

2
(X2 + Y 2)2. (9)

By analogy with high energy physics [6] for further analy-
sis of the phase trajectories we introduce the new designa-
tions

s = Y −√
3X +

2
√

3
3
X0,

t = Y +
√

3X +
2
√

3
3
X0,

u = Y −
√

3
3
X0, (10)

where X0 = 8
√

3(νx − q/3)/3A2, and in accordance with
the sign of the tune shift δ = (νx − q/3) it takes positive or
negative value. Taking into account (10) one can cast (9) in
the form

s · t · u+
8B
A2

(X2 + Y 2)2 =
16
A2

H − 4
9
X3

0 . (11)

In general, this is the equation of the fourth order curve. In
the absence of the constant component of the cubic nonlin-
earity of the magnetic field (B = 0) it defines a curve of
the third order. Phase trajectories are given by the equation

s · t · u = η, (12)

where η = 16H/A2 − 4X3
0/9 – constant. By analogy with

electrostatics value η can be called charge [7]. Then the
entire phase plane is divided into two areas: one carrying a
positive charge of η > 0, and the other carrying a negative
charge of η < 0 [9]. The boundary between these regions
is separatrix

s · t · u = 0, (13)

on separatrixH =
√

3
36 A2X

3
0 . The solution of this equation

is given by family of three straight lines:

s = 0, t = 0, u = 0, (14)

forming the equilateral triangle at its intersection. The ver-
texes of this triangle determine the position of three unsta-
ble fixed points

1) X = 0, Y = − 2
√

3
3 X0;

2) X = −X0, Y =
√

3
3 X0;

3) X = X0, Y =
√

3
3 X0.

+

+

+
+

− −

−
Figure 1: Schematic view of the phase trajectories near
to the resonance of third order. Distribution of charge is
shown. B = 0.

The separatrix divides the phase plane into regions of
stable and unstable motion. Let us examine the nature of
the phase curves. First of all it should be noted that each
of the straight lines (14) divides the plane into two half-
plane with positive or negative values of the corresponding
variables s, t, u. According to this fact the sign of the s ·
t · u product in (12) is determined. The phase trajectory
bild-up may be performed in ”the small variation method”
explained by F. Klein [8]. For a small values of η, such that

|η| � |X3
0 | the corresponding phase trajectories are close

to the separatrix in the region defined by the sign of η. It
opens up a opportunity of graphical construction of phase
trajectories on the basis of qualitative analysis [9] (fig. 3).

The phase curves farthest from the separatrix are close
to the fixed points. In the central area there are the closed
curves containing the stable singularity. If X2 + Y 2 =
R2 � X2

0 the phase curve distance from the separatrix
decreases as η/R2. WhenB is not equal to zero at the large
distances from the center of the coordinate system (R2 �
X2

0 ) term in (11) proportional to (X2 + Y 2)2 dominates
and defines the sign of the left side of the equation keeping

it constant everywhere outside of some central area with a

large enough radius. This leads to the coalescence of the
separatrix branches. Moreover there is the connection of
the branches limiting the sectors with η opposite in the sign
to B.
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Figure 2: Phase trajectories close to the resonance of third
order, B = 0.

Figure 3: Phase trajectories at the resonance of third order,
B = 0.
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