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Abstract

In works by B.I. Bondarev, A.P. Durkin, A.D. Ovsyan-
nikov mathematical model of optimization of charged par-
ticles dynamics in RFQ accelerators was proposed. In this
paper a new mathematical model of optimization of parti-
cle dynamics in traveling wave is considered. Joint opti-
mization model of program and disturbed motions is inves-
tigated.

INTRODUCTION

In works [1] mathematical model for optimization of
RFQ structure was suggested. Transverse and longitudi-
nal motions were investigated separately. But characteris-
tics of transverse motion were considered and analyzed at
the stage of longitudinal motion optimization. In particular
restrictions were imposed on defocusing factor.

In this paper other model of longitudinal motion based
on the selection of program motion (synchronous particle
motion) and beam of charged particles (movements in de-
viations from program motion). This model has been tested
for RFQ structure.

Phase of synchronous particle and intensity of accelerat-
ing field are considered as control parameters (functions).
It should be noted that in paper [1] those parameters also
were considered as controls, but mathematical model of
optimization was different from the model proposed in this
paper.

PROBLEM STATEMENT

Let us investigate the problem of control of longitudinal
dynamics of beam in waveguide accelerator as a problem
of joint optimization of synchronous particle motion and
ensemble of trajectories [3]. As control functions let us
choose the laws of changing of dimensionless parameter of
the amplitude of the accelerating wave α(ξ) [5] and syn-
chronous phase ϕs(ξ) along the structure.

Adopt the following notation u1 = α(ξ), u2 = ϕs(ξ),
where functions u1(ξ), u2(ξ) are controls.

Let the phase of the particle is given by [1]

ϕ = ω

∫ z

0

dz

υ(z)
− ωt+ ϕs. (1)

Under program motion (synchronous particle motion)
we mean a solution of the system

dγs
dξ

= −α(ξ) sinϕs,

ϕs = u2(ξ)

with initial condition

γs(0) = γs0.

Here γs — reduced energy of synchronous particle.
Phase of the beam particles, according to (1) will be con-

sidered in the deviation of the phase of the synchronous
particle:

ϕ̂ = ϕ− ϕs.

Considering that the longitudinal velocity of the syn-
chronous particle coincides with the phase velocity of the
wave, i. e.

β = βs =

√
γs2 − 1
γs

, (2)

obtain controlled dynamical system described by the sys-
tem of ordinary differential equations

dγs
dξ

= −u1(ξ) sin(u2(ξ)), (3)

dγ

dξ
= −u1(ξ) sin(ϕ̂+ u2(ξ)), (4)

dϕ̂

dξ
= 2π

(
γs√
γ2
s − 1

− γ√
γ2 − 1

)
(5)

with initial conditions

γs(0) = γs0, (6)

γ(0) = γ0, ϕ̂(0) = ϕ̂0. (7)

Here ξ ∈ T0 = [0, L] — independent variable;
(γ0, ϕ̂0)T ∈ M0, γs ∈ Ωx ⊆ R1; (γ, ϕ̂)T ∈ Ωy ⊆ R2 —
vector of system variables; (u1, u2)T ∈ U ⊆ R2 —
2-dimensional vector-function of control; L — constant
value.

It is assumed that the sets of Ωx and Ωy — are open, set
U and set of positive measure M0 ⊂ Ωy — are compact.

We also assume that the admissible controls u = u(ξ),
ξ ∈ T0, constitute a class of piecewise smooth on the
interval [0, L] functions with values in a compact set U .
By piecewise smooth functions we mean functions, which
derivatives have only a finite number of discontinuities of
the first kind.

Equations (3)–(5), where ϕ̂ — phase in deviations from
the synchronous phase, and γ — complete reduced energy,
convenient when considering optimization problems. But
in the future equations in deviation of energy of the syn-
chronous particle will be considered.
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THE EQUATION OF THE SEPARATRIX
Choose as dynamic variables, the phase difference of

asynchronous and synchronous particle and the difference
of the reduced energy

ψ = ϕ− ϕs, pψ = γ − γs.

Subtracting equation (3) from (4),

dpψ
dξ

= −u1(ξ)
(
sin(ψ + u2(ξ)) − sin(u2(ξ))

)
.

Take the derivative with respect to the coordinate of value
and make the substitution ξ = z/λ. Given that ω = 2πc/λ,
υ = υs, υz−υsυs

≈ 1
γs2

pψ
psυs

[2], we obtain a system of first
order equations describing the dynamics of the longitudinal
motion:

dpψ
dξ

= −u1(ξ)
(
sin(ψ + u2(ξ)) − sin(u2(ξ))

)
, (8)

dψ

dξ
=

2π√
(γ2
s − 1)3

pψ. (9)

From equations (8), (9) we obtain an equation describing
the separatrix of the beam in the phase plane ψ, pψ [2]:

pψ = ±
√√

(γs2 − 1)3

π

√
V (−π − 2u2) − V (ψ),

where function

V (ψ) = −u1(ξ)
(
cos(ψ + u2(ξ)) + ψ sin(u2(ξ))

)

is analogous to the potential energy.

FUNCTIONALS
In accordance with the objectives of optimizing we shall

consider the following functionals:

I1(u) =
∫
ML,u

(
a

(
γL
γsL

− 1

)2

+

+ b(ϕ̂L − ϕ̄L)2
)
dγLdϕ̂L, (10)

I2(u) =
∫ L

0

∫
Mξ,u

h(q, q̄)dϕ̂dγdξ, (11)

where

h(q, q̄) =

{
(q − q̄)2, if q > q̄;
0, if q � q̄,

Here ϕ̂L, γL — phase and reduced energy of disturbed
motion at the output of accelerator correspondingly,
γsL, ϕ̄L — reduced energy of synchronous particle and av-
erage phase of disturbed motion at the output of accelerator,

q = H(ψ, pψ) — value of the Hamiltonian of the particles
beam system (4), (5), which is given by

H(ψ, pψ) = V (ψ) +
π√

(γ2
s − 1)3

pψ
2,

and q̄ — value of Hamiltonian corresponding to the sepa-
ratrix.

We will consider the minimization of functional (10),
(11) by controls (u1, u2)T .

Optimization will be performed by the gradient
methodon the basis of variation of the [3–6], which is a
linear combination of the above functional, equipped with
weighting coefficients.

NUMERICAL RESULTS
Software tool for considered problem was implemented

in Matlab as a unit of the BDO-RFQ 1.6 system, developed
by the department of theory of control systems of electro-
physical equipment in SPbSU.
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Figure 1: The change of reduced amplitude of intensity
(upper plot) and phasesynchronous particle (lower plot) af-
ter optimization

Initial controls u1 = α(ξ) and u2 = ϕs(ξ) were defined
by 40 points and interpolating between them with splines.

The calculations were carried out for the structure with
the following parameters: injection energy — 80 keV, ac-
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celerating wave length — 1 cm, length of structure — 80
cm.
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Figure 2: The relative deviation of the energy of the beam
particles (upper plot) and the phases of the beam particles
(lower plot)

The solution was carried out in two stages. At the first
stage capture coefficient equal to 0.95 was achieved. At the
second stage the width of the energy and phase spectra was
minimized at the output of accelerator.

Numerical optimization was performed on 500 particles
uniformly located in between the phases of −3 to 3 rad.,
which corresponds to obtained coefficients of capture. This
resulted in the controls α(1)(ξ) and ϕ(1)

s (ξ) (Fig. 1). These
controls allow the output structure with the energy spread
28%and the width of the phase spectrum 0,73 rad. (Fig. 2).
The average energy at output of structure is 5,6 MeV.

It should be noted that all of the particles were in the
acceleration mode. It is seen in Fig. 3, since the separatrix
limits the capture of particles into the acceleration mode.

CONCLUSION

In this paper a mathematical model to optimize the beam
dynamics in the accelerator with traveling wave was devel-
oped. The separatrix equation was used for the construction
of mathematical optimization model of beam dynamics.
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Figure 3: Separatrix and energy-phase distribution of the
particle beam at the output of buncher (upper plot) and out-
put of structure (lower plot)
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